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Abstract 

Antibody–drug conjugates (ADCs) represent a novel class of biopharmaceuticals comprising monoclonal antibod-
ies covalently conjugated to cytotoxic agents via engineered chemical linkers. This combination enables targeted 
delivery of cytotoxic agents to tumor site through recognizing target antigens by antibody while minimizing off-
target effects on healthy tissues. Clinically, ADCs overcome the limitations of traditional chemotherapy, which lacks 
target specificity, and enhance the therapeutic efficacy of monoclonal antibodies, providing higher efficacy and fewer 
toxicity anti-tumor biopharmaceuticals. ADCs have ushered in a new era of targeted cancer therapy, with 15 drugs 
currently approved for clinical use. Additionally, ADCs are being investigated as potential therapeutic candidates 
for autoimmune diseases, persistent bacterial infections, and other challenging indications. Despite their therapeutic 
benefits, the development and application of ADCs face significant challenges, including antibody immunogenic-
ity, linker instability, and inadequate control over the release of cytotoxic agent. How can ADCs be designed to be 
safer and more efficient? What is the future development direction of ADCs? This review provides a comprehensive 
overview of ADCs, summarizing the structural and functional characteristics of the three core components, antibody, 
linker, and payload. Furthermore, we systematically assess the advancements and challenges associated with the 15 
approved ADCs in cancer therapy, while also exploring the future directions and ongoing challenges. We hope 
that this work will provide valuable insights into the design and optimization of next-generation ADCs for wider clini-
cal applications.

Keywords Antibody–drug conjugates, Monoclonal antibody, Cytotoxic agents, Linkers, Targeted therapy, Clinical 
application

Introduction
Cancer continues to be a leading cause of mortality 
worldwide, imposing significant economic and social 
burdens on global health systems [1]. According to the 
2024 global cancer statistics, nearly 20 million new can-
cer cases and 9.7 million cancer-related deaths were 
reported in 2022, highlighting the urgent need for 
improved therapeutic strategies [2]. Among the current 
treatment options, chemotherapy based on cytotoxic 
agents remains the most widely employed, exhibiting 
potent anti-tumor efficacy [3]. However, its limitations, 
including poor target specificity, a narrow therapeutic 
window, and the emergence of drug resistance, encounter 
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persistent challenges in clinical oncology [4]. Achiev-
ing targeted delivery, precise tumor eradication, and an 
expanded therapeutic window with cytotoxic agents 
remains a critical goal. Addressing these issues has 
spurred extensive research into novel anti-tumor thera-
pies with enhanced selectivity and reduced toxicity. Mon-
oclonal antibody (mAb) drugs play a crucial role in tumor 
therapy, demonstrating remarkable clinical potential due 
to their high specificity and precise mechanisms of action 
[5]. Since the approval of the first mAb, Muromonab, in 
1986, over 160 monoclonal antibodies (mAbs) have been 
approved by 2024, with approximately 42% targeting 
oncology indications [6, 7]. Although mAbs demonstrate 
superior specificity, they often exhibit reduced intrin-
sic cytotoxicity compared to traditional chemotherapy 
drugs and may pose a potential risk of drug resistance. 
To address these limitations, antibody–drug conjugates 
(ADCs) have emerged as a transformative advancement 
in cancer therapy [8].

ADCs are cutting-edge biopharmaceuticals that cou-
ple highly specific mAbs to potent cytotoxic agents via 
chemical linkers. This design enables precise delivery of 
cytotoxic agents to tumor cells, leveraging the antibody’s 
specificity for target antigens while minimizing off-target 
effects on healthy tissues. ADCs address the lack of target 
specificity in traditional chemotherapy, enhance the ther-
apeutic effectiveness of mAbs, and offer potent treatment 
with minimal side effects [9]. This advancement repre-
sents significant milestone in targeted therapy, opening 
up novel opportunities in oncology. The FDA approved 
the first ADC, gemtuzumab ozogamicin, in 2000 for adult 
acute myeloid leukemia (AML) [10]. Since then, ADCs 
have emerged as a promising approach in oncology, with 
15 ADCs approved globally by 2024. These ADCs are pri-
marily utilized in the treatment of various malignancies, 
such as myeloid leukemia, lymphoma, multiple myeloma, 
and breast cancer, among others (Table  1). Currently, 
over 400 ADCs are under development globally,with 
more than 200 in various stages of clinical trials [11]. 
Notably, 24 candidates have advanced to phase III clinical 
trials (Table  2). These advancements highlight the con-
tinuous progress in the design of ADCs, encompassing 
innovations in antibody engineering, linker technology, 
and cytotoxic payloads, which collectively enhance their 
therapeutic efficacy and broaden their clinical applica-
bility. In this review, we aim to provide a comprehensive 
overview of the recent advancements and clinical appli-
cations in ADCs development.

The development process of ADCs
The development of ADCs can be categorized into four 
distinct stages based on their composition and tech-
nical characteristics (Fig.  1a). The first-generation of 

ADCs employed conventional cytotoxic agents as pay-
loads, conjugated to murine mAbs via non-cleavable 
linkers [12]. However, these ADCs generally demon-
strated reduced efficacy compared with free cytotoxic 
agents, and the murine-derived mAbs frequently elic-
ited significant immune responses, thereby compromis-
ing both their therapeutic effectiveness and safety [13]. 
The introduction of humanized mAbs and enhance-
ments in the potency of cytotoxic agents improved the 
efficacy of subsequent ADC generations, with the first 
ADC, gemtuzumab ozogamicin, receiving approval 
for clinical use in 2000 [14]. Despite these advance-
ments, gemtuzumab ozogamicin still faces significant 
challenges, particularly regarding the stability of its 
conjugation. The linker of this drug is susceptible to 
degradation in the bloodstream and under acidic condi-
tions, leading to the premature release of the cytotoxic 
agent, N-acetyl-γ- calicheamicin. This uncontrolled 
release was associated with severe adverse effects, such 
as hepatotoxicity and veno-occlusive disease (VOD). 
Additionally, clinical trials failed to demonstrate signif-
icant therapeutic benefits for gemtuzumab ozogamicin 
in maintenance therapy, ultimately leading to its volun-
tary market withdrawal in 2010 [15, 16]. Additionally, 
the hydrophobic nature of payloads in first-generation 
ADCs frequently led to antibody aggregation, which 
accelerated the clearance of ADCs and consequently 
reduced their half-life in circulation. The second-gener-
ation of ADCs resolved many of these issues by incor-
porating humanized or fully human mAbs, thereby 
markedly reducing immunogenicity and enhancing 
tumor targeting [17]. These ADCs also employed more 
potent cytotoxic agents, enhancing their therapeutic 
index. Advances in linker technology further improved 
ADCs’ stability in plasma, ensured a more uniform 
distribution of the drug-to-antibody ratio (DAR) and 
improved overall conjugation efficiency. Approximately 
one-third of the currently marketed ADCs are classi-
fied as second-generation. A prominent example of this 
generation is trastuzumab emtansine, which was the 
first ADC approved for the treatment of solid tumors 
[18]. Despite substantial advancements, the second-
generation still faces challenges. These limitations pri-
marily arise from off-target toxicity, heterogeneous 
drug distribution caused by conventional non-site-
specific conjugation techniques, and the aggregation 
or rapid clearance of unbound antibodies [19]. To 
address these issues, third-generation ADCs have been 
developed wirth a DAR of 2 or 4 and leveraging tar-
geted coupling technologies to improve efficiency and 
specificity of drug conjugation [20]. These ADCs dem-
onstrate improved concordance, reduced off-target 
toxicity, and minimized immunogenicity via the use of 
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fully humanized mAbs [21]. Additionally, third-gen-
eration ADCs often incorporate hydrophilic linkers to 
counteract the high hydrophobicity of certain cytotoxic 
agents, such as pyrrolobenzodiazepines (PBD). This 
modification helps in prolonging the retention time of 
ADCs in circulation [22]. Enfortumab vedotin, a third-
generation ADC targeting solid tumors in patients 
who have failed PD-1/PD-L1 therapy, exemplifies the 
success [23]. Fourth-generation ADCs have further 
optimized the DAR compared to the third-generation, 
building upon its advancements. Notable examples 
include trastuzumab deruxtecan and sacituzumab 
govitecan, which achieve DAR values of 7.8 and 7.6, 
respectively. This improvement significantly enhances 
the concentration of cytotoxic agents in tumor tissues, 
thereby improving antitumor efficacy [24, 25] (Fig. 1b). 
Additionally, the Fab fragment, known for its increased 
stability in circulation and superior internalization by 
tumor cells, is being actively developed as a replace-
ment for the intact mAb in many ADC candidates [26].

In conclusion, the advancements of fourth-genera-
tion ADCs have surpassed those of the first three gen-
erations of ADC technology. The improvements in 
specificity and reduction in cytotoxicity are significant 
achievements. These advancements not only highlight 
the pivotal role of ADCs in cancer treatment but also 
provides patients with more precise and effective thera-
peutic options.

Mechanism of ADCs
The"magic bullet"theory, initially proposed by Paul 
Ehrlich over a century ago, envisioned the creation of 
chemical agents capable of selectively targeting patho-
gens and sparing normal human cells [27]. This pioneer-
ing concept laid the foundation for the development 
of ADCs. In 1967, radioimmunotherapy emerged as 
a precursor to ADCs, while the advent of hybridoma 
technology in 1975 revolutionized the production of 
mAbs, propelling ADC research into the modern era 
[28, 29]. ADCs typically consist of a highly specific 
mAb, a stable linker, and a potent cytotoxic agent [30]. 
The linkers play a pivotal role in conjugating cytotoxic 
agents to the mAbs, ensuring stability during systemic 
circulation while enabling the controlled release of 

cytotoxic agents release within target cells [31]. Upon 
binding to tumor-specific antigens, ADCs are internal-
ized via receptor-mediated endocytosis, progressing 
sequentially from early endosomes to late endosomes 
and eventually fuseing with lysosomes. Within the 
lysosome, cytotoxic agents are released through enzy-
matic or chemical cleavage, targeting DNA or tubulin, 
thereby inducing apoptosis or necrosis and exerting 
their cytotoxic effects on tumor cells [32, 33] (Fig.  2a). 
In addition to their direct cytotoxic effects, a subset of 
ADCs exhibit bystander effects mediated by the passive 
diffusion of cytotoxic payloads into neighboring cells, 
especially those lacking target antigen expression or 
harboring antigenic mutations. The most pronounced 
bystander activity has been observed with topoisomer-
ase I inhibitor-based payloads such as deruxtecan (DXd) 
[34]. However, this phenomenon is not universally 
exhibited by all ADCs, as its manifestation depends crit-
ically on the physicochemical properties and membrane 
permeability of the conjugated cytotoxic agent. Notably, 
ADCs employing monomethyl auristatin F (MMAF) as 
the payload generally fail to exhibit bystander effects 
due to the charged C-terminal moiety that hinders cel-
lular membrane penetration [35]. When the target is 
heterogeneously expressed among tumor cells or par-
tially resistant cells, ADCs with bystander effects can 
directly kill antigen-positive tumor cells and indirectly 
kill surrounding antigen-negative tumor cells, stromal 
cells, and some resistant cells [36, 37]. This mecha-
nism can influence the entire tumor microenvironment 
(TME), significantly enhancing the therapeutic efficacy 
of ADCs, particularly in tumors characterized by het-
erogeneous antigen expression or drug-resistant cell 
populations [38] (Fig. 2b). The antibody components of 
ADCs also exhibit specific binding to epitope antigens 
of tumor cells, subsequently inhibit the downstream 
signaling pathways of antigen receptors and induce 
apoptosis and differentiation in tumors (Fig. 2c). Nota-
bly, certain antibody components of ADCs interact with 
immune effector cells, thereby stimulating antitumor 
immunity, including complement-dependent cytotox-
icity (CDC), antibody-dependent cellular cytotoxicity 
(ADCC), and antibody-dependent cellular phagocytosis 
(ADCP) [39–43] (Fig. 2d).

(See figure on next page.)
Fig. 1 The development of ADCs. a The development stages of ADCs. ADCs can be classified into four generations since the concept of “magic 
bullets” was proposed in 1906. b Key characteristics of approved ADCs. Currently, 15 ADCs are available on the market. Among them, 7 types 
of ADCs target tumor antigens of hematological malignancies (blue) and 8 target tumor antigens of solid tumor (brown). Thirteen of these ADCs 
belong to the IgG1 subclass (purple), and the remaining two belong to the IgG4 subclass (green). Linkers are categorized as either cleavable (curve 
lines) or non-cleavable (straight lines). Payloads include DNA-targeting agents (pentagram), pseudomonas aeruginosa exotoxin A (triangle), TOP 1 
inhibitors (hexagon), tubulin binders (circular) and photosensitizers (square). The numbers associated with payloads represent the DAR
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Monoclonal antibodies to ADCs and their target 
antigens
“Navigator for ADCs”‑monoclonal antibodies
Monoclonal antibodies (mAbs) that form the founda-
tion of ADCs must adhere to stringent criteria to ensure 
therapeutic efficacy. These criteria include appropriate 
affinity for the target antigen, minimal or absent binding 
to off-target sites, and the ability to efficiently penetrate 
and internalize within tumor cells [44]. The affinity of the 
mAb for the antigen plays a critical role in determining 
the ADC’s capacity to infiltrate tumor tissues. Moder-
ate affinity facilitates rapid internalization and degrada-
tion of ADCs, whereas an excessively high affinity may 
result in ADCs accumulating near blood vessels, thereby 
restricting deeper tumor penetration [45, 46]. Conse-
quently, the selection of an optimal antigen–antibody 
combination is crucial for achieving a balance between 
efficient endocytosis and adequate tissue penetration. 
Furthermore, mAbs should possess low immunogenic-
ity, a long half-life, and high stability—properties that 
are essential for maintaining therapeutic efficacy [47]. 
These characteristics ensure that mAbs remain in circu-
lation for a sufficiently long duration to effectively reach 
and bind to tumor cells. In ADCs, mAbs serve a multi-
faceted role, primarily by enabling the precise delivery 
of cytotoxic agents into tumor cells. Specifically, the Fab 
fragment of mAbs recognizes tumor-associated anti-
gens (TAAs), thereby precisely modulating downstream 
signaling pathways to effectively inhibit tumor growth 
and induce apoptosis and differentiation. The Fc region 
enhances the therapeutic potential of ADCs by mediat-
ing ADCC, ADCP, and CDC via its interactions with Fc 
receptors. This amplification of immune-mediated effects 
significantly boosts the overall efficacy of the mAbs. 
Moreover, the Fc region binds to the neonatal Fc recep-
tors in a pH-dependent manner, which helps protect the 
antibody from lysosomal degradation, thereby prolong-
ing its half-life in circulation and maintaining higher 
drug concentrations at the tumor site [48–51]. In ADCs, 
mAbs are selected as chimeric or humanized IgG, which 
are classified into four subtypes based on the structure 
of the heavy chain and hinge regions (IgG1, IgG2, IgG3, 
and IgG4) [19]. Among the approved ADCs, IgG1 is 

the most commomly used antibody for ADCs, account-
ing for 86.7% (13 out of 15). IgG1 is the most preferred 
for its favorable pharmacokinetic properties, including 
a prolonged serum half-life (~ 21 days), high solubil-
ity, and robust complement fixation capacity. Moreover, 
IgG1 exhibits minimal non-specific immunogenicity and 
demonstrates a strong affinity for Fcγ receptors, which 
is crucial for mediating ADCC, ADCP, and CDC [52, 
53]. Although IgG2 exhibits a comparable half-life of 21 
days, its propensity to form dimers and aggregates in vivo 
compromises physiological stability, consequently limit-
ing its clinical application. IgG3, due to its overly strong 
immunogenicity, causes severe side effects. Additionally, 
it has a short half-life (~ 7  days), which may contribute 
to higher rates of treatment failure [54, 55]. Conversely, 
IgG4 has a low immune-activating effect and is suitable 
for situations where antibody-mediated cytotoxicity is 
not required [56] (Fig. 3a). Notably, among the approved 
ADCs, only gemtuzumab ozogamicin and inotuzumab 
ozogamicin utilize the IgG4 subtype, accounting for 
13.3% (2 out of 15) [50].

To enhance cytotoxicity and improve specificity, sig-
nificant structural optimization of mAbs has been 
achieved, including the development of bispecific anti-
bodies (BsAbs), which have emerged as a promising 
trend in antibody research. BsAbs possess the capabil-
ity to simultaneously recognize two distinct epitopes on 
a single target or two separate targets, thereby offering 
superior clinical outcomes compared to traditional mAbs 
and opening new avenues for ADC development [57, 
58]. Dual-epitope ADCs are engineered to simultane-
ously recognize two epitopes on the same antigen, which 
enhances antibody avidity and facilitates more efficient 
internalization of the drug into target cells. For instance, 
ZW49, a bispecific ADC targeting two non-overlapping 
epitopes of the human epidermal growth factor recep-
tor 2 (HER2), incorporates a novel payload, N-acyl 
sulfonamide auristatin, contributing to its favorable tol-
erability. Furthermore, the bispecific antibody nature of 
ZW49 contributes to superior internalization compared 
to trastuzumab. Its Fc region mediates ADCC, ADCP, 
and CDC effects, while the hexameric configuration of 
HER2 augments CDC and internalization. Preclinical 

Fig. 2 The Mechanism of ADCs for anti-tumor through different approaches. ADCs couple highly specific mAbs to potent cytotoxic agents 
via chemical linkers. a The core mechanism of ADCs. ADC cytotoxicity involves a series of sequential processes: binding to cell-surface antigen, 
internalization of the ADC − antigen complex via endocytosis, subsequent lysosomal degradation, release of cytotoxic agents into the cytoplasm, 
and exertion of cytotoxic effects on target cells. b The bystander effect of ADCs. A portion of the payloads may be released into the extracellular 
environment and subsequently taken up by neighboring cells, including resistant or non-target cells. c Retention of mAb activity in ADCs. The mAbs 
in ADCs retain their ability to interfere with target function, inhibit downstream signaling pathway, and induce apoptosis. d Anti-tumor immunity 
effects of ADCs. ADC mAbs interact with immune effector cells to elicit ADCC, ADCP, and CDC effects. (by Fig Draw)

(See figure on next page.)
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data indicate that ZW49 exhibits potent tumor-killing 
effects and favorable patient tolerance without compro-
mising HER2 affinity (highest non-severely toxic dose 
= 18 mg/kg) [59, 60] (Fig. 3b). In September 2022, clini-
cal trial data for ZW49 revealed promising anti-tumor 
efficacy in patients with advanced HER2-expressing solid 
tumors, achieving an objective response rate (ORR) of 
31% [60]. Dual-target ADCs refer to targeting two dif-
ferent antigens, which enhances overall internalization 
efficiency, promotes the transport and degradation of 
complexes within lysosomes, and improves targeting 
specificity. A novel bispecific ADC, BL-B01D1, engi-
neered with an anti-epidermal growth factor receptor 
(EGFR) Fab and an anti-human epidermal growth fac-
tor receptor 3 (HER3) scFv179, has exhibited efficacy 
against EGFR-dependent tumors while reducing drug 
resistance associated with HER3 expression. Early stud-
ies have demonstrated that BL-B01D1 exhibits antitumor 
activity in heavily pretreated advanced solid tumors and 
maintains an acceptable safety profile [61, 62] (Fig.  3c). 
As the next generation of ADCs, bispecific ADCs com-
bine the advantages of BsAbs with the targeted therapy of 
ADCs. These bispecific ADCs have been shown to target 
tumor cells with greater precision, thereby minimizing 
non-specific binding to normal tissues and reducing off-
target toxicities associated with traditional ADCs, such 
as gastrointestinal and dermatological toxicities. The 
ability to simultaneously interfere with multiple signal-
ing pathways results in more effective inhibition of tumor 
cell proliferation and metastasis, thus mitigating issues of 
resistance caused by the downregulation or mutation of 
single targets. The enhanced drug delivery efficiency and 
therapeutic efficacy of bispecific ADCs are attributed to 
their targeted delivery of cytotoxic agents to tumor cells 
expressing specific antigens [63]. These features position 
bispecific ADCs as a promising advancement in cancer 
therapy, offering potential solutions to challenges faced 
by conventional ADCs, including low endocytic effi-
ciency, off-target toxicities, and resistance mechanisms.

Target antigens of ADCs
The selection of target antigens is crucial in determin-
ing the specificity, applicability, and internalization effi-
ciency of ADCs. Ideal targets should be highly expressed 

in tumor-specific tissues and minimally or not at all in 
normal tissues, ensuring enhanced targeting precision 
and reduced off-target effects [64, 65]. Additionally, the 
target antigen should be non-secretory to minimize non-
specific binding to free mAbs, which can compromise the 
accuracy and safety of ADC localization [8]. At the same 
time, selecting targets with robust endocytosis capabili-
ties and appropriate transport pathways is essential for 
ensuring effective internalization of ADCs and enhancing 
the cytotoxic effects of agents [66]. Currently approved 
ADCs typically target tumor-associated antigens that are 
overexpressed in tumor cells, such as CD19, CD22, and 
CD30 in hematological malignancies (Fig. 4a), and EGFR, 
HER2, and trophoblast cell surface antigen (TROP2) in 
solid tumors (Fig. 4b).

ADCs targets for hematological malignancies
CD33 is a 67 kDa transmembrane glycoprotein that 
belongs to the siglec immunoglobulin superfamily. It is 
expressed on normal multipotent myeloid progenitor 
cells, unipotent colony-forming cells, and monocytes 
[67], where it regulates critical biological processes such 
as cell adhesion, myeloid cell maturation, and cytokine 
production upon cross-linking or ligand binding. Nota-
bly, CD33 is highly expressed in AML cells, with approxi-
mately 90% of AML patients exhibiting CD33 positivity 
in leukemia cells [68]. The ADCs induce apoptosis in 
leukemic cell through specific binding to CD33 antigen, 
which facilitates receptor-mediated internalization and 
delivery of cytotoxic agents. In contrast, CD33 is not 
expressed in hematopoietic stem cells (HSCs), mature 
granulocytes, and other normal tissues [69]. Further-
more, the internalization of the CD33-anti-CD33 com-
plex by target cells is well-documented [16, 70]. These 
characteristics make CD33 an ideal target for ADC-based 
therapies in AML.

CD30, also known as TNFRSF8, is a member of the 
tumor necrosis factor receptor superfamily. It plays a 
crucial role in activating the mitogen-activated kinase 
pathway, including extracellular signal-regulated kinase 
1 and 2 (ERK1/2), which contribute to anti-apoptotic 
and pro-survival signaling in tumor cells [71]. CD30 is 
expressed at low levels on normal, activated lympho-
cytes, but is highly expressed in certain hematological 

(See figure on next page.)
Fig. 3 Monoclonal antibodies in ADCs. a Upper: Key characteristics of monoclonal antibodies in ADCs. Lower: Human immunoglobulins 
(IgGs) include four subclasses (IgG1, IgG2, IgG3, and IgG4), which exhibit differences in their constant domain and hinge regions. Compared 
with IgG2 and IgG4, IgG1 demonstrates a comparable serum half-life but exhibits enhanced ADCC, ADCP, and CDC effects. b ZW49 is composed 
of an anti-HER2 biparatopic IgG1 antibody conjugated to a tubulin-binder auristatin payload (ZD02044) via a cleavable linker, with an average DAR 
of 2. c BL-B01D1 comprises a bispecific antibody against EGFR/HER3 conjugated to a novel TOP 1 inhibitor payload (Ed-04) via a cleavable linker, 
with an average DAR of 8. (by Fig Draw)
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Fig. 4 Target antigens of ADCs. a Crystal structures of target antigens in marketed ADCs for treating hematological malignancies. b Crystal 
structures of target antigens in marketed ADCs for treating solid tumors. All crystal structures were obtained from the Protein Data Bank (PDB, 
https:// www. rcsb. org/). c Distribution of target antigens among marketed ADCs, with HER2 being the most prominent target as it is recognized 
by three ADCs. d Distribution of target antigens among phase III ADCs, where HER2 remains the most highly focused target, accounting for eight 
out of 24 ADCs

https://www.rcsb.org/
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malignancies, including classical Hodgkin lymphoma 
(cHL), peripheral T-cell lymphoma (PTCL), and diffuse 
large B-cell lymphoma (DLBCL), making it an attrac-
tive therapeutic target [72, 73]. Furthermore, since CD30 
does not shed extracellularly and possesses internaliza-
tion properties [74], this further supports its potential for 
ADCs development.

CD22, a member of the siglec immunoglobulin super-
family, is a surface glycoprotein expressed on B lym-
phocytes. It plays a critical role in maintaining humoral 
immune homeostasis by modulating inhibitory signals 
in B-cell receptor (BCR) signaling pathways [75, 76]. 
In addition to its expression in normal B cells, CD22 is 
highly expressed in various B-cell malignancies, such 
as acute lymphoblastic leukemia (ALL), non-Hodgkin’s 
lymphoma (NHL), and hairy cell leukemia (HCL) [77]. 
Due to its stable expression profile and lack of significant 
extracellular shedding or internalization properties under 
physiological conditions, CD22 serves as an attractive 
target for ADCs [78]. Although CD22 exhibits a similar 
binding affinity to CD19 and has a ligand density approx-
imately one-tenth that of CD19, clinical trials have con-
sistently shown that ADCs targeting CD22 demonstrate 
superior inhibitory effects. This enhanced efficacy can be 
attributed to the higher rates of receptor-mediated endo-
cytosis. Within one hour, a significantly greater amount 
of CD22-targeting immunotoxins are internalized (two to 
three times more than the number of CD22 molecules on 
the cell surface), whereas CD19-targeting immunotox-
ins exhibit an internalization rate only 1/3 to 1/5 of that 
observed with CD22-targeting immunotoxins [79].

CD79b is a 47 kDa transmembrane glycoprotein that is 
a key component of the BCR signaling complex. It medi-
ates antigen-stimulated signaling and facilitates endocy-
tosis, both of which are essential for maintaining B-cell 
functionality and immune responses [80–82]. CD79b is 
expressed at low levels on normal B cells but is highly 
expressed in more than 90% of B-cell lymphomas and is 
absent in other hematopoietic cell types [80]. Upon anti-
body binding, CD79b undergoes rapid internalization 
and is subsequently transported to lysosomes [83], ren-
dering it a an ideal target for the ADC delivery. To date, 
polatuzumab vedotin represents the first approved ADC 
targeting CD79b, specifically indicated for the treatment 
of relapsed or refractory diffuse large B-cell lymphoma 
(R/R DLBCL).

B-cell maturation antigen (BCMA), a member of the 
tumor necrosis factor receptor superfamily, serves as a 
receptor for the B-cell activating factor and a prolifera-
tion-inducing ligand, playing a crucial role in the survival 
and proliferation of myeloma cells [84]. It primarily pro-
motes myeloma cell proliferation through the activation 
of intracellular signaling pathways such as NFκB, AKT, 

and PI3 K. BCMA is lowly expressed on normal tissue 
cells and CD34 + stem/progenitor cells, yet it is highly 
expressed in 80% to 100% of multiple myeloma cells. 
Upon binding to antibodies, BCMA is rapidly internal-
ized, which facilitates effective drug delivery to target 
cells [85]. Currently, various BCMA-targeted therapies, 
including ADCs, are undergoing clinical trials and have 
demonstrated significant clinical efficacy in patients with 
relapsed or refractory multiple myeloma (R/R MM).

CD19 is a crucial transmembrane protein involved in 
B-cell proliferation, differentiation, and activation, mak-
ing it a reliable biomarker for B cells [86]. It exhibits high 
specificity for malignant B cells, with expression rates of 
approximately 80% in AML, 88% in B-cell lymphoma, 
and nearly 100% in B-cell leukemia [87]. Notably, CD19 
is not expressed on hematopoietic stem cells, plasma 
cells, or T cells. Furthermore, the rapid internalization 
of CD19 upon antibody binding enhances the safety and 
efficacy of ADC-based drug delivery [88].

The efficacy of approved ADCs in treating hemato-
logic malignancies is significantly influenced by their 
ability to target immune-specific biomarkers, which are 
often highly expressed in malignant blood cells. Com-
pared with traditional chemotherapeutic agents, ADCs 
facilitate the efficient internalization of their cytotoxic 
payloads by specifically binding to these targets, thereby 
enhancing both therapeutic safety and efficacy. While 
most current ADCs are designed for oncology, advance-
ments in ADC development are paving the way for 
applications in non-oncological diseases. For instance, 
the bispecific antibody PRV-3279, which targets CD79b 
and CD32b, is undergoing phase II clinical trials (Clini-
calTrials.gov ID: NCT05087628) for systemic lupus ery-
thematosus [89]. As the development processes of ADCs 
continue to be optimized, non-oncological disease drug 
targets will emerge as potential candidates for future 
ADC research, thereby expanding their clinical applica-
tion scope.

ADCs targets for solid tumor
EGFR, a 170 kDa transmembrane glycoprotein, is a 
member of the ErbB receptor tyrosine kinase family. The 
EGFR signaling pathway plays a crucial role in the regula-
tion of various cellular processes, including proliferation, 
differentiation, apoptosis, migration, and tumor angio-
genesis [90, 91]. However, in a variety of tumor patho-
types, aberrant expression or mutation of EGFR results 
in its over-activation, leading to sustained activation of 
downstream signaling pathways (Ras/MAPK, PI3 K/Akt, 
JAK/STAT). This over-activation significantly influences 
tumor cell proliferation, migration, and invasion, while 
exerting inhibitory effects on apoptosis [92, 93]. Stud-
ies have demonstrated that EGFR is highly expressed in 
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numerous tumors, most notably in non-small cell lung 
cancer (NSCLC) [94]. Additionally, aberrant expression 
of EGFR has been observed in colorectal cancer, glioblas-
toma, head and neck squamous cell carcinoma (HNSCC), 
and various other malignancies [95, 96]. ADCs target-
ing EGFR differ from mAbs and small molecule tyros-
ine kinase inhibitors (TKIs) in that they do not primarily 
obstruct individual signaling pathways of EGFR. Instead, 
ADCs bind to EGFR using antibodies and trigger endo-
cytosis, thereby facilitating the precise delivery of cyto-
toxic agents to tumor cells while minimizing damage 
to normal tissues. In this context, EGFR serves more as 
a cellular marker for targeting rather than as the thera-
peutic agent itself, which effectively mitigates the issue of 
drug resistance associated with EGFR-targeted therapies. 
These characteristics make EGFR a attractive target for 
ADCs [97, 98].

HER2, a member of the EGFR family, is involved in 
the regulation of cell growth, proliferation, apoptosis, 
and differentiation [99, 100]. Under physiological condi-
tions, HER2 is lowly expressed. However, mutations in 
the HER2 gene, including overexpression, amplification, 
or mutation, can aberrantly activate downstream signal-
ing pathways, promoting tumor cell proliferation, inva-
sion, and metastasis [101]. HER2 is highly expressed and 
is frequently observed in breast cancer, gastric cancer, 
and cholangiocarcinoma, occurring in approximately 
20% of cases, while it is less frequent in lung cancer and 
colorectal cancer, accounting for approximately 2.5% 
and 5%, respectively [102, 103]. ADC therapies target-
ing HER2 have demonstrated significant clinical efficacy, 
particularly in breast cancer, gastric cancer, urothelial 
carcinoma, and NSCLC [104]. Trastuzumab deruxtecan, 
the first HER2-targeted ADC, has significantly improved 
overall survival (OS) rates for patients with HER2-posi-
tive advanced gastric cancer/gastroesophageal junction 
cancer (GC/GEJC) [105]. Another HER2-targeted ADC, 
disitamab vedotin, has further improved therapeutic 
outcomes for patients with gastric cancer and urothelial 
carcinoma.

TROP2, also known as tumor-associated calcium sig-
nal transducer 2 (TACSTD2) and membrane component 
chromosome surface marker (M1S1), is a 36 kDa trans-
membrane glycoprotein that is expressed at low levels 
in normal tissues but is highly expressed in various epi-
thelial carcinomas, including breast cancer and urothe-
lial carcinoma [106, 107]. TROP2 influences cell cycle 
regulation by modulating cyclin D1/E levels, leading to 
uncontrolled cell growth and promoting cancer cell pro-
liferation, migration, and invasion. Furthermore, TROP2 
is characterized by its rapid internalization upon anti-
body binding [108]. These characteristics make TROP2 
an attractive target for ADCs.

Nectin cell adhesion molecule-4 (Nectin-4), a 66 
kDa transmembrane protein belonging to the Nectins 
family, plays a crucial role in cell–cell adhesion, actin 
cytoskeleton remodeling, and the induction of epithe-
lial-mesenchymal transition (EMT), which ultimately 
contribute to tumor development and metastasis. Nec-
tin-4 is highly expressed in various cancers, including 
breast cancer, urothelial carcinoma, and ovarian can-
cer, and promotes tumor proliferation and migration 
through the activation of the PI3 K/Akt signaling path-
way. Additionally, Nectin-4 exhibits a rapid internaliza-
tion rate upon antibody binding. These characteristics 
make Nectin-4 an ideal target for ADCs [109–111]. In 
comparison to widely targeted ADCs such as HER2, 
TROP2, and EGFR, there are currently fewer targeted 
ADCs for Nectin-4. To date, only enfortumab vedo-
tin has been approved for the treatment of urothelial 
carcinoma.

Tissue factor (TF), a 47 kDa transmembrane glyco-
protein, functions as a receptor for coagulation factors 
VIIa and X. TF can promote angiogenesis by binding 
to vascular endothelial growth factor (VEGF), thereby 
enhancing tumor proliferation and invasiveness [112]. It 
also stimulates the release of matrix metalloproteinases 
(MMPs), which degrade the extracellular matrix (ECM) 
surrounding cells, facilitating the invasion of cancer cells 
into adjacent tissues and their metastasis to distant sites 
from the primary tumor. Additionally, TF exacerbates 
inflammatory responses in the tumor microenviron-
ment by promoting platelet activation and adhesion, fur-
ther accelerating cancer progression [113]. Studies have 
demonstrated that TF is significantly upregulated in vari-
ous cancers, including breast cancer, colorectal cancer, 
and pancreatic cancer, with particularly high expression 
observed in triple-negative breast cancer (TNBC), where 
it is present in 50–85% of patients [114]. Given its high 
expression and rapid internalization in tumor cells, TF 
has emerged as an ideal target for ADC development.

Folate receptor alpha (FRα), also known as folate-bind-
ing protein (FBP), is a glycoprotein anchored to the cell 
membrane via glycosylphosphatidylinositol (GPI). FRα 
exhibits high affinity for folate and mediates its uptake 
through receptor-mediated endocytosis [115]. While 
its expression is low in normal tissues, FRα is highly 
expressed in various cancers, including ovarian cancer, 
lung cancer, breast cancer, and endometrial cancer, with 
particularly high expression in ovarian cancer patients 
[116]. Beyond its role as a folate transporter, FRα also 
acts as a transcription factor, contributing to tumor cell 
proliferation and metastasis. FRα dynamically cycles 
between the cell surface and intracellular compartments, 
facilitating the efficient internalization of drugs bound 
to the receptor [117]. These characteristics make FRα a 
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highly promising target for ADCs-based targeted cancer 
therapy.

The analysis of targets among currently marketed 
ADCs identifies a total of 12 tumor-associated targets. 
Among these, HER2 stands out the most prominent, 
accounting for approximately 20% (3/15) of the targeted 
ADCs, followed closely by CD22 (Fig.  4c). Additionally, 
HER2, EGFR, and TROP2, which are under evaluation 
in phase III clinical trials, continue to garner significant 
attention, with HER2 alone being targeted by 8 out of the 
24 ADCs in this phase (Fig.  4d). The identification of a 
novel target frequently signifies major advancements in 
the treatment of specific diseases. Consequently, compre-
hensive research on popular targets and the identification 
of new targets should be prioritized as a core strategy for 
ADCs development. Compared to existing endocytosis-
dependent targets, non-endocytic targets hold great 
potential. Non-endocytic ADCs are being investigated 
for multiple targets, such as CD20, CD21, Carbonic 
Anhydrase IX (CAIX), and Fibroblast activation protein 
(FAP) [118], thereby opening new avenues for future 
ADCs development.

“Bridges for ADCs”—linkers
The linker, a crucial component of ADCs, precisely con-
jugates cytotoxic agents to mAbs. Its design is essential 
for achieving targeted delivery and maximizing thera-
peutic efficacy. An ideal linker should remain stable in 
systemic circulation to ensure that ADCs maintain a sta-
ble connection between the antibody and payload dur-
ing systemic circulation, thereby minimizing premature 
drug release and reducing off-target toxicity. Upon entry 
into tumor cells, the linker should facilitate efficient and 
timely release of the payload, ensuring that cytotoxic 
effects are confined to the tumor microenvironment. 
Linkers with appropriate hydrophilic/lipophilic proper-
ties can bind to the characteristics of effective payloads 
and mitigate immune responses. Hydrophobic link-
ers coupled with hydrophobic payloads often promote 
the aggregation of ADC molecules. Aggregated ADCs 
may act as immunogenic substances, potentially trigger-
ing undesired immune responses during circulation in 
the bloodstream [119]. Additionally, the linker must not 
induce ADC aggregation, as this could impair antibody 
functionality, decrease stability, and affect pharmacoki-
netics [120]. Linkers are generally categorized into two 
main types: cleavable and non-cleavable linkers (Fig. 5).

Cleavable linkers
Cleavable linkers are designed to exploit the unique 
environmental conditions present within tumor cells, 
distinguishing between the systemic circulation and the 
intracellular microenvironment to facilitate the selective 

release of cytotoxic agents from the antibodies. These 
linkers do not depend on the proteolytic cleavage of the 
antibody, ensuring precise drug release at the tumor site. 
When exposed to tumor-associated factors such as acidic 
pH, specific redox conditions, or enzymatic activity, 
cleavable linkers undergo chemical or enzymatic reac-
tions that trigger release of the cytotoxic agents [121]. 
This mechanism not only ensures targeted drug deliv-
ery but also allows for diffusion to adjacent non-targeted 
cells, resulting in potential bystander effects that enhance 
therapeutic efficacy [3]. Cleavable linkers can be fur-
ther categorized into chemically cleavable linkers and 
enzyme-cleavable linkers, each designed to respond to 
specific intracellular conditions to optimize drug release 
and minimize systemic toxicity [120, 122] (Fig. 5).

Chemically cleavable linkers
Chemically cleavable linkers are categorized into pH-
sensitive hydrazone bonds and reducible disulfide bonds, 
each presenting unique advantages and limitations within 
drug delivery systems. Linkers based on hydrazone bonds 
exhibit stability during circulation and facilitate payload 
release within lysosomes (pH 4.8) and endosomes (pH 
5.5–6.2) following internalization by cancer cells [123]. 
However, this hydrolysis can occur not only in the acidic 
environments of lysosomes but also in plasma, poten-
tially leading to off-target effects. Gemtuzumab ozo-
gamicin, the first approved ADC, primarily utilizes the 
acid-sensitive cleavage of the hydrazone linker to release 
cytotoxic agents, whereas the disulfide bond cleavage 
predominantly occurs during the intramolecular activa-
tion of N-acetyl-γ-calicheamicin, which serves to main-
tain its molecular conformational stability rather than 
functioning as a release mechanism for the linker [124]. 
Nonetheless, the non-specific release associated with 
gemtuzumab ozogamicin resulted in adverse systemic 
effects, ultimately leading to its market withdrawal in 
2010 [125]. Consequently, ADCs based on hydrazone 
linkers have been primarily utilized in hematological 
malignancies. Inotuzumab ozogamicin, which also uti-
lizes a hydrazone linker, demonstrated greater stability 
in human plasma and serum compared to gemtuzumab 
ozogamicin (with hydrolysis rates of 1.5–2% per day over 
four days) and is used to treat ALL [126, 127]. Sacitu-
zumab govitecan employs a pH-sensitive linker (CL2 A) 
to couple SN-38 to the anti-TROP2 antibody [128, 129]. 
In contrast to the hydrazone bonds, the CL2 A linker 
contains a nine-polyethylene glycol structure, which 
increases the water solubility of SN-38, thus significantly 
improving sacituzumab govitecan’s serum stability for 
TNBC [130, 131]. Despite these successes, the complex 
in vivo pH environment limits the broader application of 
pH-sensitive linker-based ADCs.
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On the other hand, disulfide bond-based linkers 
depend on reduced glutathione (GSH), a small thiol 
molecule released in substantial quantities during cell 
survival and proliferation. These linkers exhibit rela-
tive stability in the extracellular humoral environment 

(sulfhydryl small-molecule concentration of about 0.05 
mmol/L) and are more readily cleaved in the intracellular 
environment (sulfhydryl small-molecule concentration 
of about 0.5 ~ 10 mmol/L, and sulfhydryl small-mole-
cule molecular concentration of cancer cells of about  104 

Fig. 5 Classification of linkers in ADCs. Linkers of ADCs are classified into two categories: cleavable and non-cleavable linkers. Cleavable linkers 
consist of seven subtypes, which can be further divided into chemical cleavable and enzymatic cleavable linkers. In chemically cleavable linkers, 
the C-terminus of the hydrazone linker is conjugated to the cysteine residue of the antibody via an acetylbutyryl (AcBut) group, while its hydrazine 
terminus (NH-NH-R3) is directly attached to the cytotoxic agent. For disulfide linkers, one sulfur atom originates from the cysteine residue 
of the antibody, whereas the other sulfur atom in the disulfide bridge stems from the thiol group of the cytotoxic agent. In Val-Cit and Val-Ala 
peptide linkers, the N-terminus (-NH2) is covalently linked to antibody cysteine residues via a maleimide moiety, while the C-terminus (-COOH) 
is tethered to the cytotoxic agent through a PABC group. The N-terminus (-NH2) of Gly-Gly-Phe-Gly is covalently conjugated to antibody cysteine 
residues via a maleimide moiety, while the C-terminus (-COOH) is connected to the cytotoxic agent through a PABC linker. In Glucosidase cleavable 
linkers, the  C1 hydroxyl group (-OH) is covalently attached to the PABC moiety, which cennects the cytotoxic agent to the antibody. The spacer 
serves as a crucial component of this linker type, meticulously engineered to ensure optimal length and flexibility for maintaining linker stability. 
Common spacer designs include alkyl chains, PEG, amino acid/peptide sequences, or aromatic moieties. In maleimidocaproyl linkers, the maleimide 
group facilitates site-specific conjugation to cysteine residues on the antibody and to the amino group of cytotoxic agents via the carboxyl group 
of the caproyl moiety. (http:// pubch em. ncbi. nlm. nih. gov)

http://pubchem.ncbi.nlm.nih.gov
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times higher than that in the blood environment) [132, 
133]. As a result, GSH-cleavable linker remains stable in 
circulating blood until is cleaved after entering the highly 
concentrated environment inside tumor cells [134]. For 
example, the approved mirvetuximab soravtansine and 
tusamitamab ravtansine, currently in phase III, are using 
the N-succinimidyl 4-(2-pyridyldithio) butanoate (SPDB) 
[135] linker for the treatment of ovarian cancer and 
NSCLC, respectively [136–138].

Enzyme‑cleavable linker
Enzyme-cleavable linkers, in contrast to chemically 
cleavable linkers, exploit the high concentrations of spe-
cific hydrolases found within cellular compartments to 
selectively degrade peptides and carbohydrates. These 
enzyme-cleavable linkers are generally categorized into 
peptide and glycosidase types (Fig. 5).

ADCs with peptide-based linkers are internalized into 
the lysosome via endocytosis and are specifically recog-
nized by cathepsin B to cleave the peptide bond, thereby 
releasing the payloads. The utilization of peptide linkers 
in ADCs often necessitates the incorporation of a spacer 
molecule due to the bulky nature of the payload. Para-
aminobenzyl carbamate (PABC) is a frequently employed 
reagent in this context [139], as it exhibits self-cleaving 
properties that facilitate the release of the payload [122]. 
Furthermore, peptide linkers demonstrate enhanced sys-
temic stability and enable rapid enzymatic release of the 
payload in target cells, even under suboptimal pH con-
ditions and in the presence of serum protease inhibitors 
[120]. Valine-citrulline (Val-Cit), phenylalanine-lysine 
(Phe-Lys), and valine-alanine (Val-Ala) dipeptide linkers 
are among the most widely utilized linkers in the design 
of ADCs. Currently, five marketed ADCs utilize Val-Cit, 
including brentuximab vedotin and polatuzumab vedo-
tin, as well as eight candidates in phase III such as MRG-
003. Val-Ala exhibits greater hydrophilicity than Val-Cit, 
conferring a distinct advantage when used with lipophilic 
payloads such as PBD, as exemplified by the approved 
ADC loncastuximab tesirine. In addition to dipeptide 
linkers, the tetrapeptide Gly-Gly-Phe-Gly has also been 
successfully employed in ADCs, exhibiting enhanced sta-
bility in circulation compared to dipeptides [140, 141]. 
ADCs utilizing Gly-Gly-Phe-Gly linker include marketed 
drugs like trastuzumab deruxtecan, as well as several 
candidates in phase III clinical trials such as BNT323, 
SHR-A1811, patritumab deruxtecan, datopotamab der-
uxtecan, ifinatamab deruxtecan, and raludotatug derux-
tecan (Table 2).

Glucosidase-cleavable linkers primarily consist of 
β-glucuronidase-cleavable and β-galactosidase-cleavable 
linkers. The former is recognized and degraded by 
lysosomes, which are rich in β-glucuronidase and 

active only in a specific lysosomal acidic environment. 
β-Galactosidase is highly expressed in certain tumor 
tissues and facilitates drug release through the hydroly-
sis of the β-galactoside bond [120]. In a study by Jeffrey 
et  al., a β-glucuronidase-cleavable linker was utilized to 
sequentially conjugate payloads (MMAE, MMAF, doxo-
rubicin propyloxazoline) with mAbs c1 F6 (anti-CD70) 
and cAC10 (anti-CD30), followed by an evaluation of 
the resulting ADCs. The results showed that each ADC 
demonstrated high plasma stability, was well tolerated 
at a high dose (100 mg/kg), and exhibited significant 
therapeutic effects both in  vitro and in  vivo [142]. Fur-
thermore, ex vivo experiments have shown that galactosi-
dase-based ADCs exhibit a more pronounced therapeutic 
effect in isolated mouse plasma compared to trastuzumab 
emtansine, which is approved for breast cancer treatment 
and employs a non-cleavable linker [143].

Non‑cleavable linkers
Non-cleavable linkers, including thioether and maleimi-
docaproyl (MC) types, offer significant advantages due 
to their stable chemical bonds, which prevent proteolytic 
cleavage and contribute to reduced off-target toxicity. 
These linkers enhance plasma stability, rendering them 
less susceptible to the chemical or enzymatic environ-
ment in  vivo following the internalization of ADCs by 
target cells [144, 145]. Once internalized, the antibody 
component of the ADCs is degraded within lysosomes, 
resulting in a complex of amino acids, linker, and cyto-
toxic agent. This mechanism ensures precise drug deliv-
ery to tumor cells, minimizing nonspecific drug release 
and reducing off-target effects [146]. Trastuzumab 
emtansine, the first ADC to utilize a non-cleavable 
linker, employs N-succinimidyl-4- (maleimidomethyl) 
cyclohexane-1-carboxylic acid (SMCC), a flexible dual-
reactive (amine/thiol) linker, to conjugate the cytotoxic 
agent DM1 (emtansine) to trastuzumab [147]. This ADC 
targets HER2-positive metastatic breast cancer (HER2 
+ mBC) cells, and upon lysosomal degradation, releases 
lysine-MCC-DM1, leading to direct tumor cell killing 
[148]. Similarly, belantamab mafodotin, an approved 
ADC for R/R MM, utilizes the MC linker to attach cyto-
toxic agents to mAbs [149]. Furthermore, oxime-type and 
triazole-type linkers are now also employed in the design 
of non-cleavable linkers, such as in FS-1502, currently in 
phase III, which utilizes geranyl ketone pyrophosphate 
oxime to conjugate cytotoxins for HER2-positive breast 
cancer (HER2 + BC) [150]. Despite their benefits, non-
cleavable linkers result in lower ADC payload release effi-
ciency, potentially impacting therapeutic efficacy. These 
linkers also tend to inhibit bystander effects, because 
the released catabolites have poor cellular permeability. 
Consequently, identifying alternatives to improve drug 
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release and enhance therapeutic outcomes has become a 
major focus of ongoing research.

Currently, 73.3% (11/15) of approved ADCs and 75.0% 
(18/24) of phase III ADCs employ cleavable linkers, with 
peptide linkers being the most common subtype. These 
account for 46.7% (7/15) of approved ADCs and 58.3% 
(14/24) of those in phase III. In comparison to chemi-
cally cleavable linkers, enzyme-cleavable linkers exploit 
abundant intracellular hydrolases to facilitate controlled 
drug release. This enzymatic mechanism ensures greater 
stability in plasma, making enzyme-cleavable linker more 
competitive for future ADC development. To enhance 
linker solubility and mitigate polymerization, polar 
groups such as polyethylene glycol (PEG) can be incor-
porated into the linker structure. This strategy has been 
employed in the marketed ADCs loncastuximab tesirine 
and sacituzumab govitecan, as well as in phase III clini-
cal candidates such as trastuzumab duocarmazine, ARX-
788, and DP-303c. Additionally, designing linkers with 
multiple attachment sites for payloads enhances the 
number and diversity of the conjugated drugs, which not 
only improves therapeutic efficacy but also reduces the 
potential for resistance.

Coupling technology
The selection of an appropriate coupling method is a 
critical step in ADC preparation, as it determines the 
DAR and the homogeneity of ADCs, thus affecting the 
biological activity and stability of ADCs. Current cou-
pling techniques are categorized into non-site-specific 
and site-specific methods (Table 1), each offering unique 
advantages and challenges. These techniques influence 
the control over DAR, conjugation efficiency, and the 
overall pharmacokinetic and pharmacodynamic (PK/PD) 
properties of the ADCs.

Non‑site‑specific coupling techniques
Most FDA-approved and phase III clinical trial ADCs 
currently utilize non-site-specific coupling techniques, 
which depend on lysine or cysteine residues on the mAb 
to provide the reactive sites for coupling to the cytotoxic 
agents [119]. Lysine coupling typically involves attach-
ing the payload to lysine residues on the mAb surface 
via a succinimidyl ester on the linker. However, each 
IgG1 antibody typically possesses more than 20 poten-
tial coupling sites, resulting in a wide range of DARs and 
significant heterogeneity among lysine-coupled ADCs, 
which may adversely affect the PK/PD of the drug [151]. 
Conversely, cysteine coupling is the preferred method in 
current development. IgG1 contains both interchain and 
intrachain disulfide bonds, with the interchain disulfide 
bond located on the antibody surface and readily reduced 
to expose free cysteine residues, which can then be 

coupled to maleimides on the linker. This method offers 
a simpler process, controllable cysteine binding sites, 
and highly reactive thiol groups [152, 153]. For instance, 
IgG1 and IgG4 antibodies possess four pairs of interchain 
disulfide bonds, enabling precise conjugation and result-
ing in a DAR ranging from 0 to 8. Approved ADCs such 
as gemtuzumab ozogamicin, inotuzumab ozogamicin, 
and trastuzumab emtansine utilize a lysine-based cou-
pling strategy, whereas polatuzumab vedotin, enfortumab 
vedotin, and brentuximab vedotin employ a cysteine-
based coupling strategy.

The use of non-site-specific coupling techniques can 
alleviate the complexity inherent in antibody-specific site 
mutations, simplifying the optimization process. How-
ever, non-site-specific ADCs are subject to heterogene-
ity, which results in reduced overall stability, off-target 
effects, and aggregation, thereby narrowing the thera-
peutic window. This challenge underscores the necessity 
for more controlled and precise conjugation strategies to 
enhance ADC performance.

Site‑specific coupling techniques
Site-specific coupling techniques typically involve the 
modification or engineering of mAbs to introduce unique 
functional groups on their surface for the selective 
attachment of cytotoxic agents. These techniques pri-
marily include engineered cysteine (Thio-mab) coupling, 
unnatural amino acid coupling, and enzyme-modified 
coupling [154]. Compared to non-site-specific coupling 
methods, ADCs prepared using site-specific techniques 
exhibit greater homogeneity, thereby improving the ther-
apeutic window and significantly advancing the efficacy 
of ADCs.

The engineered cysteine coupling technique was devel-
oped to selectively target cysteines at specific sites on the 
mAb, facilitating efficient attachment of thiol groups. 
This method has demonstrated high coupling efficiency, 
with ADCs exhibiting a DAR of 2 and a conversion rate 
of up to 92.1% [155]. However, the possibility of unin-
tended disulfide bonding in the antibody molecule due 
to the introduction of sulfhydryl groups requires urgent 
attention [156]. Unnatural amino acid coupling intro-
duces non-natural amino acids into the mAb’s sequence 
to create specific coupling sites, allowing for more precise 
drug attachment and resulting in ADCs with homogene-
ous DAR values. This method has been associated with 
improved therapeutic outcomes, including longer half-
lives and greater efficacy and safety [157, 158]. However, 
the use of unnatural amino acids poses a risk of immune 
responses, necessitating careful selection of amino acids 
that closely resemble natural ones to balance both safety 
and efficiency. Enzymatic modification coupling technol-
ogy involves genetic engineering to artificially induce the 
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expression of specific amino acid sequences in mAbs that 
are recognizable by specific enzymes, followed by the 
enzymatic modification of specific amino acid residues 
to achieve site-specific binding. Currently, formylglycine-
generating enzymes and transglutaminase are commonly 
used [146, 159].

Site-specific conjugation achieves precise binding of 
cytotoxic agents to linkers by introducing specific chemi-
cal groups or unnatural amino acids at designated posi-
tions on mAbs, significantly enhancing the homogeneity 
and stability of ADCs and further improving their antitu-
mor efficacy. As coupling techniques continue to evolve, 
these innovative methods are anticipated to play a crucial 
role in the research, development, and clinical applica-
tion of ADCs.

“Bullets” for ADCs‑payloads
Cytotoxic agents encompass a broad range of classes, 
including alkaloids, alkylating agents, antimetabolites, 
antitumor antibiotics, topoisomerase inhibitors, and 
mitotic inhibitors [160]. ADCs are characterized by 
their unique biodistribution and metabolic properties, 
with cytotoxic agents serving as the core active com-
ponents that exert their lethal effects upon internaliza-
tion into cancer cells. Despite the fact that only 2% of 
ADCs successfully reach tumor targets after intrave-
nous administration [52], these highly cytotoxic agents 
retain substantial efficacy even at low concentrations, 
highlighting their potency. Furthermore, these cytotoxic 
agents should exhibit excellent physiological stability. 
Specifically, they are required to possess a low molecular 
weight, demonstrate high solubility in water, and main-
tain resistance to the acidic environment of lysosomes, 
even following the degradation of ADCs into payload-
linker complexes [12, 19] (Fig.  6a). Currently, approved 
ADC payloads include two types of tubulin inhibitors (six 
auristatins and two maytansinoids), two types of DNA-
damaging agents (two calicheamicins and one PBD), two 
types of topoisomerase 1 (TOP1) inhibitors (one DXd 
and one SN-38), a photosensitizer, and a bacterial toxin 
(Table 1). The payloads for phase III ADCs include three 
classes of tubulin inhibitors (nine auristatins, one may-
tansinoid, and one SC209), one class of DNA-damaging 
agent (one seco-DUBAs), three classes of TOP1 inhibi-
tors (four DXd, one P1003, one SHR9265, one SN-38, 
one KL610023, one adizutecan, and one exatecan), and a 
pseudomonas exotoxin (ETA-252–608) (Table 2).

Tubulin inhibitors
Tubulin is a major component of the cellular cytoskeleton 
and plays a crucial role in the rapid proliferation of tumor 
cells. Currently, tubulin inhibitors employed in ADCs 
primarily include auristatins and maytansinoids [161]. 

Among auristatins, monomethyl auristatin E (MMAE) 
and MMAF are particularly favored and extensively uti-
lized as payloads in the ADC domain. These compounds 
exert their effects by targeting the colchicine-binding 
site on tubulin, thereby inhibiting its polymerization, 
promoting depolymerization, disrupting its dynamic 
processes, inducing cell cycle arrest, and triggering apop-
tosis (Fig.  6b). MMAE exhibits significant bystander 
effects due to its high permeability, while MMAF, with 
its hydrophilicity and lower aggregation, has reduced sys-
temic toxicity [162, 163]. Currently, the main ADCs using 
auristatin payloads include the marketed ADCs gemtu-
zumab ozogamicin, polatuzumab vedotin, and tisotumab 
vedotin, as well as phase III candidates such as zilover-
tamab vedotin, ARX-788, and FS-1502, among others. 
Another class of tubulin inhibitors, maytansinoids, pri-
marily binds to the ends of microtubule proteins and 
inhibits microtubule dynamics, causing cells to remain in 
the G2/M phase, which in turn leads to apoptosis. Typi-
cal representatives are DM1 and DM4 (ravtansine) [164]. 
Currently, there are two marketed ADCs containing a 
maytansinoid payload, namely trastuzumab emtansine 
and mirvetuximab soravtansine, which use DM1 and 
DM4, respectively. Tusamitamab ravtansine, currently in 
phase III, also employs DM4 [165].

DNA‑damaging agents
The efficacy of DNA-damaging agents in treating solid 
tumors has been demonstrated through the inhibition of 
DNA synthesis or disruption of DNA structure via dou-
ble-strand breaks, alkylation, and cross-linking. ADCs 
utilizing DNA-damaging agents as payloads exhibit more 
significant killing power compared to ADCs employing 
tubulin inhibitors at equivalent loading capacities [166, 
167] (Fig.  6c). Additionally, ADCs with DNA-damaging 
agents as payloads have the potential to target tumor cells 
with low antigen expression, thereby improving the pre-
cision of therapeutic responses.

Calicheamicin, a naturally occurring enediyne anti-
biotic, exerts a potent DNA-damaging effect by binding 
to the minor groove of DNA, resulting in double-strand 
breaks and subsequent apoptosis [168]. Calicheamicin is 
used as a small-molecule toxin in both gemtuzumab ozo-
gamicin and inotuzumab ozogamicin. PBD binds tightly 
to the minor groove of the DNA double helix, forming 
interstrand cross-links that inhibit the binding of DNA 
with transcription factors, thereby inducing apoptosis 
in tumor cells. PBD-induced interstrand cross-links do 
not distort the DNA structure, avoiding repair mecha-
nisms, which enhances cytotoxic efficacy and mitigates 
the risk of peripheral neuropathy and systemic toxicity. 
Additionally, ADCs employing PBD exhibit a shorter 
half-life compared to other ADCs, thereby reducing 
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Fig. 6 “Bullets” for ADC payloads. a Characterization of payloads in ADCs. b Mechanism of tubulin binders in ADCs. Tubulin binders such as MMAE 
and MMAF inhibit tubulin polymerization, promote depolymerization, disrupt the dynamic equilibrium of microtubules, induce cell cycle arrest, 
and ultimately trigger apoptosis. c Mechanism of DNA-damaging agents in ADCs. DNA-damaging agents like calicheamicin and PBD inhibit DNA 
synthesis or cause structure disruption through mechanisms such as double-strand breaks, alkylation, and cross-linking, thereby inducing apoptosis. 
d Mechanism of Top1 inhibitors in ADCs. Top1 inhibitors such as DXd and SN-38 interfere with DNA transcription processes, leading to tumor cell 
apoptosis. e Mechanism of bacterial toxins in ADCs. The PE38 induces adenosine diphosphate (ADP) ribosylation, thereby blocking the elongation 
factor 2 (EF-2)-mediated peptide chain extension and inhibiting protein synthesis, which ultimately leads to cell apoptosis. f Mechanism 
of photosensitizers in ADCs. Near-infrared light irradiation activates the phototoxic properties of the photosensitizer IR700, enabling precise 
eradication of tumor cells. g Percentage distribution of marketed ADC payloads. Tubulin binders dominate this category, accounting for 53.3%. h 
Percentage distribution of phase III ADC payloads. Among these, Tubulin binders and Top1 inhibitors are the most prevalent payloads, representing 
45.8% of the total
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off-target activity [58, 169, 170]. However, the applica-
tion of PBD as a payload in ADCs is constrained by sev-
eral challenges. These include complexities in synthesis 
and conjugation, poor plasma and storage stability, non-
specific toxicity and immunogenicity, susceptibility to 
tumor heterogeneity, intricacies in dose optimization 
during clinical development, and challenges in combina-
tion therapy compatibility [170,  171]. Currently, loncas-
tuximab tesirine represents the first and only member 
of the PBD class of ADCs to be utilized clinically. Duo-
bamycin hydroxybenzamide-azaindole (DUBA) exhibits 
potent efficacy as a DNA-damaging agent through the 
tight binding of its cyclopropane ring to the DNA cleav-
age groove and the alkylation of adenine at the  N3 site. 
As a prodrug of DUBA, seco-DUBA features two modi-
fiable hydroxyl groups, facilitating efficient conjugation 
with mAbs and exhibiting exceptional performance as a 
cytotoxic anticancer carrier, suitable for the treatment of 
various tumors [172, 173]. Trastuzumab duocarmazine, 
currently in phase III clinical trials, employs seco-DUBA 
as its payload.

TOP1 inhibitors
TOP1 inhibitors target DNA topoisomerase I, disrupt-
ing DNA replication and transcription processes, which 
induces apoptosis in tumor cells [174] (Fig.  6d). Com-
monly utilized payloads include SN-38 and DXd. SN-38, 
the active metabolite of irinotecan, exhibits a potency 
that is 1000 times greater than that of irinotecan itself. 
Sacituzumab govitecan uses SN-38 as its payload for the 
treatment of breast cancer. DXd, a derivative of exate-
can, demonstrates an activity 10 times higher than that 
of SN-38, and it also offers advantages such as good solu-
bility, short half-life, and a bystander effect [175]. Tras-
tuzumab deruxtecan, utilizing DXd as its payload, has 
demonstrated therapeutic efficacy in both HER2 (low) 
and HER2 + BC patients [176]. SHR9265, a derivative 
of DXd, enhances its membrane permeability and cyto-
toxic efficacy through the introduction of a cyclopropyl 
structure. The SHR-A1811, which carries SHR9265, spe-
cifically targets HER2 for breast cancer treatment and is 
currently undergoing phase III trials [177]. The transition 
from non-targeted agents like SN-38 and DXd to preci-
sion-targeted therapies such as sacituzumab govitecan 
and trastuzumab deruxtecan represents significant pro-
gress in the clinical management of breast cancer, high-
lighting some of the most notable innovations in the field.

Although the cytotoxicity of TOP1 inhibitors is slightly 
lower than that of DNA-damaging agents, an optimized 
linker design achieves a higher DAR with better stability, 
enhancing the bystander effect. Thus, TOP1 inhibitors 
are the most promising payloads at present.

Bacterial toxins
Bacterial toxins, derived from the metabolic activi-
ties of various pathogens, exhibit significant toxicity to 
their hosts. Pseudomonas aeruginosa is a conditionally 
pathogenic bacterium that is prevalent in natural envi-
ronments and organisms and is capable of secreting 
pathogenic proteins [178].

Among these proteins, Pseudomonas aeruginosa exo-
toxin A (PEA), stands out as the most toxic virulence 
factor of the opportunistic bacterium P. aeruginosa. 
PEA induces the breakdown of nicotinamide adenine 
dinucleotide (NAD) into nicotinamide (NAM) and 
adenosine diphosphate ribose (ADPR), where ADPR 
binds to elongation factor 2 (EF-2), leading to ADP 
ribosylation. This modification inhibits peptide chain 
elongation, thereby suppressing protein synthesis and 
triggering apoptosis in host cells [179] (Fig. 6e). Nota-
bly, PE38, a truncated form of PEA, is most extensively 
used variant in ADCs, exemplified by moxetumomab 
pasudotox, which is approved for treating drug-resist-
ant HCL [180]. Due to the high immunogenicity of 
PE38, modifications involving the deletion of most 
amino acids in its structural domain II, retaining only 
a furin cleavage site, have resulted in PE24. This variant 
exhibits significantly reduced immunogenicity [181], 
facilitating enhanced drug dosage and regimens, and 
suggesting the potential for improved antitumor effi-
cacy and safety in future clinical trials.

Photosensitizers
Photosensitizers (PSs), the core component of photody-
namic therapy (PDT), predominantly exist in the form 
of organic dyes. Currently, most PSs induce apoptosis 
in cancer cells by generating 1O2 through the PDT pro-
cess, rendering the oxygen concentration within tumors 
a critical determinant of therapeutic efficacy [182–184]. 
However, the rapid proliferation of malignant tumors 
leads to a substantial increase in their demand for oxy-
gen and nutrients. As tumor volume expands, the local 
blood supply becomes inadequate, leading to a signifi-
cantly lower oxygen concentration within the tumor 
compared to normal tissues, thereby markedly diminish-
ing the efficacy of PDT [185]. Light is also a crucial factor 
affecting PDT, as the effective depth of PDT is contingent 
upon the penetrative depth of light, which varies consid-
erably with different wavelengths [186]. Previous studies 
have shown that red light and near-infrared (NIR) light at 
wavelengths of 650–1100 nm are considered ideal thera-
peutic modalities due to their deep penetration, minimal 
damage to biological samples, and avoidance of autofluo-
rescence interference [187]. For example, the marketed 
cetuximab sarotalocan employs the NIR photosensitizer 
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IRDye® 700DX as a payload for the treatment of HNSCC 
[188] (Fig. 6f ).

New potential payload
Immunostimulatory small molecules
Combining immunostimulatory small molecules with 
tumor-targeting antibodies, delivering them to the tumor 
microenvironment, and releasing them locally can miti-
gate the severe toxicity associated with the systemic 
administration of these agents. This approach aims to 
minimize systemic side effects in antitumor therapies 
and has emerged as a novel therapeutic modality with the 
potential to address various solid tumors [189]. Current 
research efforts are concentrated on the development 
of ADCs that incorporate immune-activating payloads, 
such as toll-like receptor (TLR) agonists and stimula-
tors of interferon genes (STING) agonists. TLR ago-
nists have been shown to directly or indirectly activate 
anti-tumor immune responses across a range of malig-
nant tumors, effectively inhibiting tumor progression, 
and thus have garnered significant attention in the field 
of tumor immunotherapy, especially TLR7/8/9 agonists 
[190]. For instance, an anti-HER2 immune-stimulating 
antibody drug (ISAC) with a TLR8 agonist as payload, 
ISAC drives tumor killing of myeloid cells and subse-
quent T-cell-mediated anti-tumor immunity via tumor 
antigen recognition, Fcγ receptor-dependent phagocy-
tosis, and TLR-mediated activation. This approach has 
shown promising antitumor effects in mouse tumor 
models [191]. The STING-mediated type I interferon 
signaling pathway represents a significant advancement 
in the domain of innate immunity, offering a novel tar-
get for tumor immunotherapy. Due to the potential tox-
icity associated with the systemic administration of free 
STING agonists, targeted delivery through coupling with 
antibodies presents a promising strategy to mitigate tox-
icity while enhancing anti-tumor efficacy [192]. The ADC 
candidate XMT-2056, which employs STING agonists 
as its payload, has entered phase I clinical trials and has 
been granted orphan drug designation by the FDA for the 
treatment of gastric cancer [193].

Antibody-coupled immunostimulatory small mol-
ecules not only enhance therapeutic efficacy but also 
reduce the toxicity of conventional ADCs due to their 
payload, indicating a promising direction for future ADC 
development.

RNA inhibitors
RNA inhibitors are effective in eliminating dividing and 
dormant tumor cells, and ADCs utilizing these inhibitors 
as payloads are anticipated to overcome challenges asso-
ciated with drug resistance and tumor recurrence driven 
by dormant cells [194]. RNA inhibitors suitable for ADCs 

include RNA polymerase II inhibitors and RNA splicing 
inhibitors.

Amatoxins, which are cyclic octapeptides, are synthe-
sized by ribosomes and specifically inhibit RNA polymer-
ase II, thereby inducing apoptosis. Notably, α-Amatoxin 
is particularly effective in significantly blocking tumor 
metastasis and recurrence, making it a promising agent 
against tumor drug resistance [195]. For instance, HDP-
101, which targets BCMA and is currently in phase II 
clinical trials, is being evaluated for the treatment of 
R/R MM [196, 197]. Hailanstatin, a natural RNA splicing 
inhibitor, strongly binds to and inhibits the eukaryotic 
mRNA splicing pathway, targeting both actively dividing 
and quiescent cells, thus serving as a potential payload 
for ADCs [198].

Other
Bcl-xL, as a key anti-apoptotic protein, plays a central role 
in tumor development, metastasis, and drug resistance. 
The use of Bcl-xL inhibitors as ADC payloads preserves 
activity while minimizing potential impact on platelets 
[199]. Proteasome inhibitors, such as Carmaphycins, are 
a new generation of potent anticancer drugs that serve 
as ADC’s payloads to efficiently destroy tumor cells and 
enhance tolerance. Inhibition of nicotinamide phosphori-
bosyltransferase (NAMPT), the rate-limiting enzyme that 
controls intracellular NAD + concentration, can induce a 
metabolic crisis that triggers cell death. NAMPT inhibi-
tors are an increasingly popular choice for payloads due to 
their simple structures and high efficacy [200].

In summary, tubulin binders are the most widely used 
payloads among ADCs, being selected for 8 out of 15 
marketed ADCs (53.3%) and 11 out of 24 ADCs in phase 
III clinical trials (45.8%). This is followed by DNA-dam-
aging agents (20% in approved ADCs, 4.2% in phase III 
ADCs) and TOP1 inhibitors (13.3% in approved ADCs, 
45.8% in phase III ADCs) (Fig. 6g, h). Nevertheless, there 
is a concurrent effort to identify and develop novel types 
of payloads. With rapid advancements in ADC technol-
ogy, novel payloads, such as immunostimulatory small 
molecules, which are highly efficient, low-toxicity, and 
resistant to drug resistance, are leading the develop-
ment trends of next- generation ADCs with their unique 
advantages.

DAR
DAR is the average number of payloads attached to a 
single mAb molecule. It directly influences the ability to 
deliver cytotoxic agents to the tumor target and correlates 
positively with the therapeutic efficacy. Consequently, 
DAR is a critical determinant of ADCs’pharmacological 
activity, pharmacokinetics, and safety profiles [201]. 
DAR levels significantly affect the rate of clearance and 
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bioavailability of ADCs in circulation. High-DAR ADCs 
are likely to be rapidly cleared from plasma, resulting in a 
short half-life and necessitating shorter dosing intervals. 
Conversely, low-DAR ADCs carry fewer payloads, which 
may result in insufficient anti-tumor activity. The DAR 
range of FDA-approved ADCs typically ranges from 2 to 
8 [19, 202]. For instance, trastuzumab emtansine, the first 
ADC approved for breast cancer treatment, comprises 
trastuzumab conjugated to DM1 via a non-cleavable 
linker, with a DAR of 3.5. Advances in fourth genera-
tion ADCs have optimized the payload-linker strategies, 
increasing the DAR and thereby enhancing efficacy. For 
example, the DAR values of trastuzumab deruxtecan and 
sacituzumab govitecan are 7.8 and 7.6, respectively [58].

During the coupling process, particularly with randomly 
conjugated ADCs, variations in reactant concentrations 
and reaction conditions can lead to DAR heterogene-
ity. This heterogeneity can adversely affect the stability of 
ADCs in several ways. The structural heterogeneity of DAR 
induces differential binding affinity between cytotoxic 
agents and mAbs. High DAR values cause overcrowding at 
the binding sites of mAbs with cytotoxic agents, increas-
ing repulsive forces and thus compromising affinity. Con-
versely, low DAR values result in insufficient conjugation 
of cytotoxic agents, leading to inadequate overall affinity 
[52, 203]. ADCs with weak affinity in circulation are prone 
to detachment, reducing stability. Furthermore, heteroge-
neity increases the immunogenicity of ADCs. Owing to 
inherent variations in molecular configurations and con-
stituent elements among different ADCs, these molecules 
are more likely to be recognized as foreign antigens by the 
immune system, which may trigger an immune response 
characterized by the production of anti-drug antibod-
ies (ADAs). The formation of ADA-ADC immune com-
plexes accelerates systemic clearance of ADCs through 
immune-mediated pathways, leading to a reduced plasma 
half-life, diminished circulation persistence, and com-
promised pharmaceutical stability of ADCs in vivo [204]. 
Heterogeneity may lead to uncontrolled release of cyto-
toxic agents. Distinct release characteristics were observed 
among ADCs exhibiting different DAR values and vari-
able conjugation sites. Notably, certain ADC constructs 
demonstrate suboptimal stability due to structural vul-
nerabilities or linker instability, resulting in off-target 
cytotoxic agents being released before tumor localization. 

This phenomenon not only compromises therapeutic effi-
cacy at the tumor site but also increases the risk of sys-
temic toxicity in healthy tissues, highlighting poor stability 
[201]. Heterogeneity induces changes in physicochemi-
cal properties, including solubility and charge distribu-
tion, thereby modulating their hydrophilic-lipophilic 
balance [205]. Excessive hydrophobicity promotes cyto-
toxic agents’ aggregation under physiological conditions 
through hydrophobic interactions. These aggregates com-
promise ADC pharmaceutical stability making them more 
susceptible to immune system clearance [22, 206, 207]. An 
uneven distribution of DAR or the presence of uncoupled 
antibodies ("naked"mAbs) may compromise the efficacy 
and safety of the therapeutic agent. Therefore, precise 
regulation and stringent monitoring during production are 
essential to ensure that the final ADCs consistently achieve 
their target DAR [114].

In recent years, analytical techniques such as UV–vis-
ible spectroscopy, radiolabel tracking, chromatographic 
separation, enzymatic degradation, and mass spectrom-
etry have proven valuable for process control and sam-
ple characterization in ADCs production [208–211]. 
The efficacy of these methods depends on the distinctive 
chemical and physicochemical attributes of the linker in 
conjunction with the drug molecule, which facilitate the 
regulation of quality control assays for ADCs, each pos-
sessing distinct strengths and limitations. Despite these 
advancements, the inherent heterogeneity and structural 
complexity of ADCs have thus far impeded the develop-
ment of a standardized assay system capable of accurately 
detecting DAR values. With the continuous advance-
ments in ADC technology, it is anticipated that novel 
ADCs will continue to be developed, necessitating the 
ongoing refinement and iteration of analytical characteri-
zation techniques to address future challenges.

Clinical applications and safety of marketed ADCs
Since the first approval of ADCs for cancer treatment in 
2000, this field has attracted considerable attention, with 
numerous ADCs being evaluated across various tumor 
types. As of now, 15 ADCs have received global approval, 
including 7 for the treatment of hematologic malignan-
cies and 8 for solid tumors, underscoring their significant 
therapeutic value (Fig. 7a, b).

(See figure on next page.)
Fig. 7 Clinical applications of marketed ADCs. a ADCs for the treatment of hematological malignancies. Currently, Seven types of ADCs are available 
on the market for treating of six types of hematological malignancies, including acute myeloid leukemia, multiple myeloma, among others. b 
ADCs for the treatment of solid tumors. Eight types of ADCs are utilized in the treatment of solid tumors. Notably, disitamab vedotin is the most 
extensively used ADC for targeting HER2 in various cancers, such as breast cancer, gastric cancer, gastroesophageal junction cancer, lung cancer, 
and urothelial cancer
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Fig. 7 (See legend on previous page.)
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ADCs in the treatment of hematological malignancies
Gemtuzumab ozogamicin
In March 2000, gemtuzumab ozogamicin was initially 
approved by the FDA for the treatment of R/R CD33 
+ AML in patients aged 60 years and older who were 
not eligible for other conventional chemotherapy. This 
approval was based on a clinical trial demonstrating a 
complete response (CR) rate of 26% [212]. Gemtuzumab 
ozogamicin is composed of an IgG4 antibody conju-
gated to a cytotoxic agent, N-acetyl-γ-calicheamicin, via 
AcButDMH linkers, with a DAR of 2.5. Mechanistically, 
gemtuzumab ozogamicin binds to CD33 antigens on 
the surface of AML cells, forming an antigen–antibody 
complex that undergoes internalization through endocy-
tosis. Upon internalization, the linker is cleaved, releas-
ing N-acetyl-γ-calicheamicin into the nucleus, where it 
induces double-strand DNA breaks, leading to apoptosis 
[213]. Notably, the released payload can diffuse into adja-
cent cancer cells, exerting a bystander effect. However, 
the instability of the hydrazone linker under acidic con-
ditions (e.g., pH 4–5 in lysosomes) in vivo leads to pre-
mature payload release and significant off-target toxicity. 
These safety concerns ultimately prompted the with-
drawal of gemtuzumab ozogamicin from the market. In 
2012, the French ALFA group conducted a study utiliz-
ing dose fractionation. The administration of fractionated 
lower doses of gemtuzumab ozogamicin permits the safe 
delivery of higher cumulative doses, thereby substantially 
improving outcomes in patients with AML [214]. Subse-
quent findings from the AML-19 trial demonstrated that 
first-line monotherapy with low-dose gemtuzumab ozo-
gamicin significantly improved OS in older AML patients 
who were ineligible for intensive chemotherapy, with-
out introducing additional adverse effects [215]. Based 
on these outcomes, the FDA reapproved gemtuzumab 
ozogamicin in 2017. This experience underscores the 
importance of optimizing dosing regimens and designing 
robust clinical trials to mitigate toxicity, offering valuable 
insights into the development of ADCs and therapeutic 
advancements.

In a clinical trial involving 825 pediatric patients with 
AML, gemtuzumab ozogamicin significantly improved 
the 5-year event-free survival (EFS) in patients with 
high CD33 expression. However, no significant ben-
efit was observed in patients with low CD33 expression, 
even when gemtuzumab ozogamicin was combined 
with chemotherapy [216]. Additionally, in a retrospec-
tive study of 200 adult AML patients demonstrated that 
gemtuzumab ozogamicin similarly enhanced the EFS and 
relapse-free survival (RFS) in patients with high CD33 
expression [217].

For patients presenting with first relapse of AML, 
gemtuzumab ozogamicin can be administered either as 

monotherapy or in combination with chemotherapeu-
tic agents [218]. The combination of gemtuzumab ozo-
gamicin with standard induction chemotherapy has been 
demonstrated to enhance the prognosis of patients with 
newly diagnosed AML at intermediate cytogenetic risk 
[219]. Furthermore, the combination of fludarabine, cyta-
rabine, granulocyte colony-stimulating factor, and idaru-
bicin with gemtuzumab ozogamicin has demonstrated an 
enhanced EFS in young patients with newly diagnosed 
AML, particularly in those with NPM1 or FLT3 muta-
tions, resulting in a notable increase in the three-year OS 
rates to 82% and 64%, respectively [220].

Brentuximab vedotin
In 2011, the FDA approved brentuximab vedotin for the 
treatment of relapsed/refractory Hodgkin lymphoma 
(R/R HL), systemic anaplastic large cell lymphoma 
(sALCL), and cutaneous T-cell lymphoma (CTCL) [221]. 
It consists of brentuximab, a chimeric IgG1 mAb target-
ing CD30, conjugated to MMAE via a cleavable mc-Val-
Cit-PABC linker, with an average DAR of 4. Brentuximab 
vedotin primarily enters cells through receptor-medi-
ated endocytosis, where lysosomal cathepsin B cleaves 
the Val-Cit dipeptide linker. This proteolytic process-
ing triggers a 1,6-elimination reaction mediated by the 
PABC spacer, culminating in the traceless release of 
the MMAE. MMAE inhibits cell division by preventing 
tubulin polymerization, leading to cell growth arrest and 
inducing apoptosis. Additionally, MMAE can diffuse into 
neighboring cancer cells, producing a bystander effect 
[222].

Classical Hodgkin lymphoma (cHL) is one of the more 
common cancers occurring in adolescents and young 
adults aged 15 to 39 years [223, 224]. The current stand-
ard first-line therapy for cHL is the ABVD chemotherapy 
regimen, which includes doxorubicin, bleomycin, vincris-
tine, and dacarbazine. Despite initial success, a significant 
proportion of patients experience disease relapse within 
18 months of initiating treatment, underscoring the need 
for improved therapeutic approaches. Replacing bleo-
mycin with brentuximab vedotin in the ABVD regimen 
has demonstrated promising outcomes. In a recent study, 
the proportion of patients achieving positron emission 
tomography (PET) negativity after two cycles of treat-
ment was significantly higher in the brentuximab vedo-
tin-AVD group compared to the ABVD group (82.3% vs. 
75.4%, respectively). Additionally, the two-year PFS rate 
was notably improved in the brentuximab vedotin-AVD 
group (97.3% vs. 92.6%) [225]. This finding highlights the 
potential of brentuximab vedotin-AVD as a more effec-
tive therapeutic option for cHL.

The CHOP regimen, comprising cyclophospha-
mide, doxorubicin, vincristine, and prednisone, is the 
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recommended treatment for adult patients with newly 
diagnosed anaplastic large cell lymphoma (ALCL). The 
A + CHP regimen replaces vincristine with brentuximab 
vedotin in the CHOP regimen for the treatment of newly 
diagnosed CD30 + PTCL. The results of the ECHELON-2 
phase III trial for an A + CHP regimen demonstrated 
that the 5-year PFS rates and OS rates were significantly 
higher in the A + CHP group compared to the CHOP 
group (51.4% vs. 43.0%, 70.1% vs. 61.0%, respectively). In 
this five-year update of the ECHELON-2 trial, the front-
line treatment of patients with PTCL using A + CHP 
continues to provide clinically meaningful improvements 
in PFS and OS compared to CHOP, with a manage-
able safety profile, including the continued resolution or 
improvement of peripheral neuropathy [226].

Anaplastic lymphoma kinase (ALK) inhibitor and bren-
tuximab vedotin demonstrated significant remission in 
chemotherapy-resistant ALK + ALCL. A study reported 
a patient with relapsed/refractory ALK + ALCL who 
received crizotinib and brentuximab vedotin as bridging 
therapy, followed by autologous stem cell transplanta-
tion and sequential anti-CD30 CAR T cell therapy. The 
patient achieved complete remission and long-term dis-
ease-free survival (DFS) [227]. The combination therapy 
model may provide guidance for the management of 
relapsed/refractory ALK + ALCL in this case.

Inotuzumab ozogamicin
Inotuzumab ozogamicin was approved by the FDA in 
August 2017 for the treatment of relapsed/refractory 
B-cell precursor ALL [228], and received its first pediatric 
approval in the USA for this indication in patients aged 
≥ 1 year on March 6, 2024 [229]. It comprises a human 
IgG4 mAb targeting CD22, conjugated to a cytotoxic 
agent (N-acetyl-γ-calicheamicin) via AcButDMH link-
ers, with an average DAR of 6. Inotuzumab ozogamicin 
specifically binds to the CD22 antigen on the surface 
of tumor cells. The antibody is subsequently internal-
ized into lysosomal vesicles, where the linker is cleaved, 
releasing N-acetyl-γ-calicheamicin, which then binds to 
DNA within the minor groove, ultimately causing DNA 
breaks and inducing apoptosis.

Inotuzumab ozogamicin has been utilized in R/R ALL 
patients as a bridging therapy prior to allogeneic hemat-
opoietic transplantation (allo-HCT). One study adopted 
a"3 + 3"dose-escalation design, enrolling patients follow-
ing their first complete remission (n = 14) or subsequent 
complete remissions (n = 4). Notably, 72% of patients 
underwent reduced-intensity conditioning regimens. 
The one-year PFS rate was 5.6%, with a median follow-
up duration of 18.1 months. One-year PFS and OS rates 
after allo-HCT were 89% and 94%, respectively. These 
results indicate that low-dose inotuzumab ozogamicin 

has good safety and is associated with a higher one-year 
PFS rate [230]. Historically, adults with R/R ALL expe-
rienced poor outcomes with intensive chemotherapy. In 
this context, low-intensity mini-Hyper-CVD plus inotu-
zumab ozogamicin and blinatumomab has demonstrated 
higher survival rates among patients with R/R ALL (the 
three-year OS rate was 52%) [231].

A total of 80 patients with B-ALL were treated with ino-
tuzumab ozogamicin in combination with low-dose CVD 
(cyclophosphamide, vincristine, and dexamethasone) as a 
first-line therapy. Among them, veno-occlusive disease/
sinusoidal obstruction syndrome (VOD/SOS) in 8%, the 
CR rate was 94%, and the 2-year OS rate was 64% [232]. 
This evidence demonstrates that inotuzumab ozogamicin 
can be employed as a first-line therapeutic option for 
patients who do not meet the criteria for intensified or 
pediatric treatment regimens, thereby reducing the inci-
dence of thrombocytopenia and VOD/SOS.

As previously stated, both monotherapy with ino-
tuzumab ozogamicin and combination chemotherapy 
regimens have demonstrated notable efficacy against 
relapsed and refractory B-cell precursor acute lympho-
blastic leukemia (BCP-ALL) in both adult and pediatric 
clinical trials. Furthermore, in newly diagnosed elderly 
patients with BCP-ALL, inotuzumab ozogamicin has 
shown favorable outcomes, establishing its role as a 
viable therapeutic option in this population. Ongoing 
clinical trials are exploring its utility in newly diagnosed 
pediatric patients, aiming to expand its application and 
optimize treatment strategies for younger populations.

Moxetumomab pasudotox
In September 2018, the FDA approved moxetumomab 
pasudotox for treating R/R HCL. This first-in-class ADC, 
specifically designed for HCL therapy, has demonstrated 
superior efficacy in eradicating minimal residual disease 
when compared to targeted therapies such as vemu-
rafenib, ibrutinib, and rituximab [179]. Moxetumomab 
pasudotox consists of the Fv fragment of an anti-CD22 
mAb fused to PE38 (a truncated form of PEA) and 
does not contain a linker [233]. Its mechanism involves 
the binding of the Fv portion to CD22, which is highly 
expressed on the surface of B cells, thereby delivering the 
toxin moiety PE38 directly to tumor cells. Upon internal-
ization, PE38 catalyzes the ADP ribosylation of the diph-
thamide residue in EF-2, resulting in the rapid decrease 
in levels of the anti-apoptotic protein myeloid cell leuke-
mia 1 (Mcl-1), ultimately inducing apoptotic cell death 
[179]. As a modification of BL22, it exhibits approxi-
mately 14 times greater binding affinity for CD22, slower 
dissociation rates, and enhanced cytotoxicity, which is 
advantageous for treating chronic lymphocytic leukemia 
with lower CD22 expression [234].
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Despite its promising therapeutic profile, the clinical 
utilization of moxetumomab pasudotox has been limited 
due to the availability of alternative treatment options 
and the specialized requirements for its administration, 
including toxicity management and rigorous patient 
monitoring. In August 2023, AstraZeneca announced the 
withdrawal of moxetumomab pasudotox from the mar-
ket [235]. The company clarified that this decision was 
not related to the drug’s efficacy or safety but was instead 
driven by strategic considerations.

Polatuzumab vedotin
In June 2019, the FDA approved polatuzumab vedotin 
in combination with rituximab and bendamustine for 
the treatment of adult patients with R/R DLBCL [236]. 
In April 2023, the FDA granted regular approval for 
polatuzumab vedotin in combination with rituximab, 
cyclophosphamide, doxorubicin, and prednisone (pola 
+ R-CHP) for adult patients with previously untreated 
DLBCL not otherwise specified or high-grade B-cell lym-
phoma [237]. It consists of a human IgG1 mAb targeting 
CD79b conjugated to MMAE via a cleavable mc-Val-Cit-
PABC linker, with an average DAR of 3.5. Upon binding 
to the CD79b antigen on the surface of B cells, the Val-
Cit dipeptide serves as an enzymatic cleavage site and 
is hydrolyzed by cathepsin B. This proteolytic process-
ing triggers a 1,6-elimination reaction mediated by the 
PABC spacer, resulting in the traceless release of MMAE. 
MMAE disrupts tubulin polymerization, halts cell divi-
sion, and induces apoptosis, ultimately leading to tumor 
cell death.

Polatuzumab vedotin has shown excellent therapeutic 
efficacy in patients with DLBCL, both as a single agent 
(CR rate of 52%) [238] and in combination with CHOP 
(cyclophosphamide, doxorubicin, vincristine, prednisone, 
R-CHOP) as the initial standard first-line treatment [239, 
240]. Oncologists have sought to improve the high toxic-
ity and low efficacy associated with R-CHOP treatment 
for DLBCL by substituting Pola-R-CHP for R-CHOP, 
thereby reducing the risk of disease progression, relapse, 
or mortality [241]. For instance, in an international 
phase III trial, the efficacy of the pola-R-CHP (substitut-
ing polatuzumab vedotin for Vincristine) was evaluated 
against the standard R-CHOP in previously untreated 
patients with intermediate to high-risk DLBCL. A total 
of 879 patients were randomly assigned in a 1:1 ratio 
to receive six cycles of pola-R-CHP (440 patients) and 
R-CHOP (439 patients), along with two cycles of rituxi-
mab alone. After a median follow-up of 28.2 months, 
the PFS rate was significantly higher in the Pola-R-CHP 
group compared to the R-CHOP group (76.7% vs. 70.2% 
at 2  years), and both groups had similar safety profiles 
[239, 242].

Despite the significant progress achieved with current 
therapeutic strategies, a universal cure remains elusive, 
and clinical outcomes for high-risk patient populations 
continue to fall short of expectations. It is anticipated that 
advancements in genomic and molecular technologies 
will enhance our understanding of disease heterogeneity, 
thereby facilitating the development and implementation 
of more targeted, precise, and personalized treatments.

Belantamab mafodotin
Belantamab mafodotin was approved in early August 
2020 by the FDA for the treatment of R/R MM in adult 
patients who have received at least four prior therapies 
[149]. Belantamab mafodotin is an ADC comprising a 
humanized anti-BCMA antibody conjugated to MMAF 
via a protease-resistant maleimidocaproyl non-cleavable 
linker, with an average DAR of 4 [243]. Upon binding to 
BCMA on tumor cell surfaces, it is rapidly internalized. 
The antibody is degraded in the acidic environment of 
the lysosome and under the action of enzymes, leading 
to the cleavage of the linker and the release of MMAF. 
MMAF disrupts the microtubule network, causing cell 
cycle arrest and apoptosis. Concurrently, fucosylated 
mAb binds to FcγRIIIa receptors, enhancing the recruit-
ment and activation of immune effector cells, thereby 
promoting ADCC and ADCP. Additionally, the apopto-
sis of target cells leads to the release of immunogenic cell 
death markers and induces immunogenicity-dependent 
effects [244].

Monotherapy with belantamab mafodotin at the rec-
ommended dose of 2.5 mg/kg has demonstrated clini-
cally meaningful activity and manageable safety profiles 
in patients with R/R MM. In comparison to the 3.4 mg/kg 
dose, the lower dose has been associated with a reduced 
incidence of thrombocytopenia, bleeding, neutropenia, 
and infections [243, 245]. Based on the primary analysis 
and exposure–response results from the DREAMM-2 
study, belantamab mafodotin received accelerated 
approval from the FDA for the treatment of patients with 
triple-refractory multiple myeloma and ≥ 4 prior lines of 
therapy. However, at the request of the FDA, the labeling 
was withdrawn because belantamab mafodotin did not 
meet its primary endpoint of PFS benefit in the confirma-
tory phase III DREAMM-3 trial in R/R MM [246].

Despite the aforementioned setbacks, belantamab 
mafodotin continues to be studied in several late-stage 
clinical trials. For instance, the two-part ALGONQUIN 
trial evaluated various doses and schedules of the belan-
tamab mafodotin in combination with pomalidomide and 
dexamethasone (BM + Pd) for patients who were lena-
lidomide refractory and proteasome inhibitor exposed. 
The primary endpoints were met. Furthermore, for the 
recommended Part 2 dose (RP2D) patients, the ORR was 



Page 29 of 44Wang et al. Journal of Hematology & Oncology           (2025) 18:51  

85.3%, with a ≥ very good partial response rate of 75.7% 
[247]. The ALGONQUIN trial demonstrated that the 
combination of belantamab mafodotin and Pd was more 
efficacious than other Pd-based combinations in the 
treatment of patients with recurrent multiple myeloma, 
particularly when extended dosing cycles were employed. 
Moreover, this combination therapy significantly reduced 
the prevalence of moderate-to-severe ocular symptoms.

As a core medication for multiple myeloma treatment, 
belantamab mafodotin is specifically designed for heav-
ily treatment-resistant patients with limited treatment 
options, particularly elderly patients or those with renal 
insufficiency who cannot tolerate intensive therapy. For 
urgent management of aggressive relapse cases, the combi-
nation of belantamab mafodotin with other therapies can 
rapidly achieve successful treatment outcomes. In terms of 
safety, belantamab mafodotin has demonstrated good con-
trollability in most patients, and it shows high tolerance 
and reversibility of ocular side effects [211, 248, 249].

Loncastuximab tesirine
On April 23, 2021, the FDA granted accelerated approval 
to loncastuximab tesirine for the treatment of patients 
with R/R DLBCL who have received two or more sys-
temic therapies [88, 250]. It comprises a human IgG1 
mAb targeting CD19, conjugated to SG3199, a cytotoxic 
alkylating agent derived from pyrrolopyrimidine dimer 
(PBD) through a PEG-Val-Ala-PABC linker, with an aver-
age DAR of 2.3. Upon binding to CD19 on the surface of 
the tumor cell, it is internalized, releasing SG3199, which 
irreversibly binds to the DNA grooves and forms high-
strength interstrand crosslinks, thereby disrupting the 
DNA metabolic process and inducing cell death. Addi-
tionally, PBD can diffuse into neighboring cancer cells, 
thereby eliciting a bystander effect [251].

A phase I clinical trial for the treatment of patients with 
R/R NHL demonstrated significant anti-tumor activity 
(ORR of 59.4%) and acceptable safety [252]. The results of 
the phase I study indicated that 150 μg/kg was the opti-
mal starting dose for a phase II study in patients with R/R 
DLBCL in the United States and the United Kingdom. Of 
the 145 patients enrolled in the phase II study, 70 exhib-
ited a complete or partial response, representing an ORR 
of 48.3% [253]. These findings suggest that single-agent 
loncastuximab tesirine may represent a novel therapeutic 
option for patients with R/R DLBCL.

Researchers conducted a multicenter study on patients 
with relapsed or refractory large B-cell lymphoma (R/R 
LBCL) who received tafasitamab-cxix plus lenalidomide 
(tafa-len) or loncastuximab tesirine (loncaT) at any time 
point after CD19-CAR-T therapy. The outcomes of this 
study demonstrated significant clinical benefits and dura-
ble remission in these patients, leading to the approval of 

both tafasitamab-cxix/lenalidomide and loncaT for the 
treatment of R/R LBCL [254]. Loncastuximab tesirine 
distinguishes itself from CAR-T therapy due to its lower 
economic costs, reduced side effects, and more precise 
tumor-targeted clearance.

ADCs in the treatment of solid tumors
Trastuzumab emtansine
In 2013, trastuzumab emtansine was approved by the 
FDA for the treatment of patients with HER2 + mBC 
who had previously received trastuzumab and taxane 
chemotherapy. As the first ADC targeting solid tumors, 
its scope was expanded in May 2019 to include adjuvant 
therapy for HER2-positive early breast cancer (eBC) 
[147]. It consists of a human IgG1 mAb targeting HER2, 
trastuzumab, conjugated to emtansine (also known as 
DM1) via an SMCC non-cleavable linker, with an average 
DAR of 3.5. DM1 targets tubulin, arresting the cell cycle 
at the G2/M phase, thereby inhibiting cell division and 
inducing apoptosis. Additionally, it interferes with the 
HER2 receptor signaling pathway, eliciting ADCC effects 
in human breast cancer cells overexpressing HER2 [255].

The KATHERINE trial data, which included 1,486 
patients randomly assigned to receive 14 cycles of tras-
tuzumab emtansine or trastuzumab as adjuvant therapy, 
demonstrated that 91 patients (12.2%) in the trastuzumab 
emtansine group experienced invasive disease or death, 
compared with 165 patients (22.2%) in the trastuzumab 
group. The proportion of patients in the trastuzumab 
emtansine group estimated to be free of invasive disease 
at three years was 88.3%, compared to 77.0% in the tras-
tuzumab group. This suggests that trastuzumab emtan-
sine adjuvant therapy reduces the risk of invasive disease 
or death by approximately 50% [256].

It has been demonstrated that up to 13.5% of patients 
undergoing treatment with HER-2 inhibitors may expe-
rience adverse vascular events (CVAE), including heart 
failure, cardiomyopathy, and arrhythmia [257]. The 
ATEMPT trial aimed to compare the cardiac safety of 
trastuzumab emtansine versus paclitaxel plus trastu-
zumab (TH) in the treatment of early HER2 + BC. The 
trial results indicated that the incidence of grade 3–4 left 
ventricular systolic dysfunction (LVSD) was 0.8% in the 
trastuzumab emtansine group, compared to 1.8% in the 
TH group. Additionally, the rate of alopecia was signifi-
cantly lower in the trastuzumab emtansine group (0%) 
compared to the TH group (41%), which is one of its 
unique advantages [258–260].

Trastuzumab emtansine has demonstrated excel-
lent safety and therapeutic efficacy internationally, par-
ticularly among early and advanced-stage patients with 
HER2-positive status. However, in the Asian region, the 
association rate between trastuzumab emtansine and 
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thrombocytopenia is relatively high, leading it to gen-
erally be positioned as a second-line treatment option 
[261].

Trastuzumab deruxtecan
In December 2019, trastuzumab deruxtecan received 
accelerated approval from the FDA for the treatment 
of adult patients with unresectable or metastatic HER2 
+ BC who have received two or more prior anti-HER2-
based therapies [262]. It consists of a human IgG1 mAb 
targeting HER2, trastuzumab, conjugated to an emtan-
sine derivative, known as DXd, via a mc-Gly-Gly-Phe-Gly 
linker, with an average DAR of 7.8. Upon selective enzy-
matic cleavage, DXd is released within tumor cells, inhib-
iting DNA replication and leading to cell cycle arrest and 
apoptosis. The bystander effect results in the death of 
tumor cells within the TME. Antibody binding to target 
antigens, downregulates phosphorylated Akt and upreg-
ulates cyclin-dependent kinase inhibitor p27, ultimately 
inhibiting cell proliferation [263, 264].

The DESTINY-Breast 01 trial provided a comprehen-
sive evaluation of trastuzumab deruxtecan therapy in 
adult patients who had previously received trastuzumab 
emtansine. The recommended dose of 5.4 mg/kg was 
established and assessed for efficacy and safety. Among 
the 184 patients, 60.9% exhibited efficacy, with a median 
response duration of 14.8 months and a PFS of 16.4 
months [265]. The DESTINY-Breast 03 trial will compare 
the efficacy and safety of trastuzumab deruxtecan with 
those of trastuzumab emtansine in patients with HER2 
+ mBC previously treated with trastuzumab and a taxane. 
Among 524 randomly assigned patients, the percentage 
of those who were alive without disease progression at 
12 months was 75.8% with trastuzumab deruxtecan and 
34.1% with trastuzumab emtansine. Additionally, the 
OS was 79.7% in the trastuzumab deruxtecan group and 
34.2% in the trastuzumab emtansine group [266]. In sum-
mary, trastuzumab deruxtecan demonstrated significant 
anti-tumor activity in patients with HER2 + mBC com-
pared to trastuzumab emtansine. The DESTINY-Breast 
04 trial was conducted to further assess the efficacy and 
safety of trastuzumab deruxtecan in comparison with 
standard chemotherapy. The median progression-free 
survival (mPFS) for the trastuzumab deruxtecan group 
was 10.1 months, while the chemotherapy group exhib-
ited a median of 5.4 months. Furthermore, the OS for the 
trastuzumab deruxtecan group was 23.9 months, com-
pared to 17.5 months for the chemotherapy group. The 
results demonstrate that trastuzumab deruxtecan exerts 
a pronounced anti-tumor effect on HER2 (low) mBC in 
comparison to standard chemotherapy [267].

Based on clinical research, trastuzumab deruxtecan 
shows significant potential as a transformative therapy 

for breast cancer in the future. Compared to trastuzumab 
emtansine, particularly in patients with HER2 + mBC, 
trastuzumab deruxtecan exhibits superior efficacy due 
to several critical factors. Its DAR of 7.8 enables more 
efficient payload delivery to tumor cells. Trastuzumab 
deruxtecan features a stable tetrapeptide linker that is spe-
cifically cleaved by tumor-specific proteases, enhancitng 
drug release within the tumor microenvironment. The 
shorter plasma half-life of trastuzumab deruxtecan 
reduces systemic drug exposure, thereby minimizing off-
target toxicity. Furthermore, trastuzumab deruxtecan 
induces bystander effects, which further amplifies its ther-
apeutic efficacy.

Sacituzumab govitecan
In April 2020, sacituzumab govitecan received acceler-
ated approval for the treatment of adult patients with 
metastatic TNBC who have received at least two prior 
therapies for metastatic disease [25]. It consists of hRS7 
IgG1 and SN-38 via a CL2 A linker, with an average DAR 
of approximately 7.6. Sacituzumab govitecan binds to 
TROP2 on the surface of tumor cells and enters the cells 
through endocytosis. Inside the cell, the CL2 A linker 
cleaves, releasing SN-38 which interacts with TOP1, lead-
ing to apoptosis and death of tumor cells. SN-38 can also 
extend to adjacent cell surfaces, producing a bystander 
effect. Furthermore, hRS7 IgG1κ exhibits strong ADCC 
effects [268].

The NCT02574455 clinical trial aimed to compare 
the efficacy and safety of sacituzumab govitecan versus 
monotherapy chemotherapy regimens in patients with 
advanced or metastatic TNBC. A total of 468 patients 
were randomly assigned to either the sacituzumab 
govitecan group or the chemotherapy group in a 1:1 
ratio. The study demonstrated that the clinical efficacy 
of sacituzumab govitecan was superior to that of the 
chemotherapy group. This was evidenced by the PFS rate 
(5.6 months vs. 1.7 months), OS rate (12.1 months vs. 6.7 
months), and ORR (35% vs. 5%), as well as a 59% reduc-
tion in the risk of disease progression and a 52% reduc-
tion in the risk of death [269]. Based on these outcomes, 
the FDA formally upgraded the accelerated approval of 
sacituzumab govitecan for TNBC to full approval in early 
April 2021.

The NCT04724018 trial aimed to evaluate the safety 
and efficacy of the combination therapy of sacituzumab 
govitecan and enfortumab vedotin for metastatic urothe-
lial carcinoma (mUC). The results demonstrated an 
ORR of 70%. Additionally, the combination of sacitu-
zumab govitecan and enfortumab vedotin was evalu-
ated at different dose levels (DLs), and the safe dose for 
phase II was determined (sacituzumab govitecan 8  mg/
kg, enfortumab vedotin 1.25 mg/kg). The combination 
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had encouraging activity in patients with mUC, with high 
response rates, including clinically significant complete 
responses [270].

Sacituzumab govitecan, the first-ever ADC targeting 
TROP2, has shown promising efficacy and safety profiles 
in patients with TNBC and urothelial carcinoma. Moreo-
ver, it has exhibited potential therapeutic activity across 
a spectrum of cancers, including lung and endometrial 
cancer. This has opened up novel avenues and instilled 
optimism for the treatment of various tumors.

Enfortumab vedotin
In December 2019, the FDA granted accelerated approval 
to enfortumab vedotin for the treatment of adult patients 
with locally advanced or metastatic urothelial cancer. 
This ADC comprises a human anti-Nectin-4 antibody 
conjugated to MMAE via a cleavable mc-Val-Cit-PABC 
linker, with an average DAR of 3.8. Enfortumab vedo-
tin specifically binds to Nectin-4, a cell surface protein 
highly expressed in urothelial cancer. Following receptor-
mediated endocytosis, the Val-Cit dipeptide acting as an 
enzyme-cleavable site, is hydrolyzed by lysosomal cath-
epsin B. This proteolytic processing triggers a 1,6-elimi-
nation reaction mediated by the PABC spacer, resulting 
in the traceless release of the MMAE into the cytoplasm. 
Once released, MMAE disrupts the intracellular micro-
tubule network, inducing cell cycle arrest and apoptosis, 
thereby effectively inhibiting tumor growth [271, 272].

The primary aim of the EV-301 study (NCT03474107) 
was to compare the efficacy of enfortumab vedotin ver-
sus chemotherapy (docetaxel, paclitaxel, or vinflunine) 
in patients with urothelial carcinoma who had previ-
ously received platinum-based chemotherapy and used 
PD-1 or PD-L1 inhibitors. The results indicated that 
enfortumab vedotin demonstrated superior clinical effi-
cacy compared to the chemotherapy group, particularly 
in median OS (12.88 months vs. 8.97 months), PFS (5.55 
months vs. 3.71 months), and similar rates of related 
adverse events (93.9% vs. 91.8%) [273]. Consequently, 
the FDA approved enfortumab vedotin in July 2021 for 
patients with locally advanced or mUC who have been 
treated with PD-1 or PD-L1 inhibitors and platinum 
chemotherapy, or who were previously treated with one 
or more lines of therapy with cisplatin but were ineligi-
ble for further platinum-based treatment. Following a 
median follow-up of approximately two years, enfor-
tumab vedotin maintained a clinically meaningful OS 
benefit compared to chemotherapy, consistent with find-
ings from the EV-301 primary analysis. Additionally, the 
adverse events were manageable [274].

In a phase III trial (NCT04223856), 886 patients were 
randomly assigned in a 1:1 ratio to receive either enfor-
tumab vedotin plus pembrolizumab or chemotherapy. 

The results demonstrated that the combination of enfor-
tumab vedotin and pembrolizumab showed superior 
clinical efficacy compared to chemotherapy in previously 
untreated patients with locally advanced or mUC, par-
ticularly in terms of PFS (12.5 months vs. 6.3 months), 
OS (31.5 months vs. 16.1 months) and a lower incidence 
of grade 3 or higher treatment-emergent adverse events 
in the enfortumab vedotin plus pembrolizumab arm 
(55.9% vs. 69.5%) [23].

Cetuximab sarotalocan
In September 2020, cetuximab sarotalocan was approved 
by the Pharmaceuticals and Medical Devices Agency 
(PMDA) for use in unresectable locally advanced or 
recurrent HNSCC [275]. Cetuximab sarotalocan is com-
posed of cetuximab, an anti-EGFR antibody, conjugated 
to the near-infrared photosensitive dye Si (IV) phthalo-
cyanine (IRDye700DX) via linear alkyl linkers, with a 
DAR of 1.3 to 3.8. It is noteworthy that linear alkyl linkers 
are non-cleavable, whereas the cleavable part is the axial 
sulfonate ligands of Si (IV) phthalocyanine [276, 277]. 
This innovative cancer therapeutic employs systemic 
administration, utilizing cetuximab’s specific targeting 
of EGFR-overexpressing tumor cells for precise localiza-
tion. Following intravenous administration (20–28 h), 
targeted tumor regions are irradiated with near-infrared 
light (690 nm wavelength, 100–150 mW/cm2 power den-
sity, 30–60 min per session) [277–279]. IRDye®700DX 
undergoes photochemical ligand reactions that release 
hydrophilic axial ligand chains, which cause the remain-
ing molecule to form highly hydrophobic structures. This 
chemical change results in the formation of a Z-stack 
multimer of silicon-phthalocyanine IRDye®700DX rings 
or water-insoluble aggregates, of cetuximab sarotalocan 
or cetuximab sarotalocan-antigen complexes, leading to 
quenching of IRDye®700DX fluorescence and the gener-
ation of reactive oxygen species. Furthermore, the photo-
chemical ligand release reaction induces physicochemical 
changes within the cetuximab sarotalocan-antigen com-
plex, which reduces cell membrane integrity by damaging 
transmembrane target proteins, leading to cell swelling 
and ultimately culminating in cell death [278, 280]. Nota-
bly, this photoimmunotherapy platform also exhibits 
systemic immunomodulatory effects. Therapy-induced 
cancer cell death promotes dendritic cell maturation and 
subsequent  CD8+ T-cell activation, establishing a robust 
antitumor immune response [281, 282]. This bimodal 
therapeutic approach achieves localized tumor eradica-
tion while potentially generating abscopal effects through 
enhanced immune surveillance. Unlike conventional pho-
tosensitizers, cetuximab sarotalocan operates through 
a unique mechanism. Conventional photosensitizers, 
such as porphyrin-based compounds, primarily rely on 
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passive targeting mechanisms, such as the enhanced per-
meability and retention (EPR) effect, or localized light 
activation for their therapeutic action [283]. However, 
these agents often lack specificity in target recognition, 
leading to their accumulation in normal tissues, includ-
ing the skin and liver, which can result in phototoxic side 
effects. Furthermore, the limited tissue penetration depth 
(< 1 cm) of most conventional photosensitizers restricts 
their application in the treatment of deep-seated tumors 
[284]. In contrast to the passive accumulation and short-
wavelength limitations of conventional photosensitizers, 
cetuximab sarotalocan, formed by conjugating Si (IV) 
phthalocyanine (IRDye700DX) with cetuximab, offers 
a dual advantage of molecularly targeted therapy and 
precise PDT. This innovative approach achieves specific 
targeting of photosensitizers, reduces systemic phototox-
icity, and represents a novel targeted-phototherapeutic 
strategy.

Following three decades of utilization, platinum-based 
chemotherapy has become the standard first-line treat-
ment for HNSCC. However, local recurrence and distant 
metastasis frequently result in treatment failure [285]. 
Cetuximab sarotalocan, the first emerging antibody-pho-
tosensitizer-coupled near-infrared photoimmunotherapy 
(NIR-PIT), has introduced a novel approach to treat-
ing this disease, demonstrating remarkable efficacy in 
advanced HNSCC. Currently, phase III clinical trials are 
underway globally.

Disitamab vedotin
In June 2021, the National Medical Products Adminis-
tration (NMPA) approved disitamab vedotin, the third 
HER2-targeted ADC, for the treatment of patients with 
locally advanced or metastatic gastric cancer who have 
received at least two systemic chemotherapies. Disita-
mab vedotin consists of a humanized HER2 mAb, con-
jugated to MMAE via a cleavable mc-Val-Cit-PABC 
linker, with an average DAR of 4 [286]. Disitamab vedo-
tin selectively targets HER2 on tumor cell surfaces. 
Upon receptor-mediated internalization, the Val-Cit 
dipeptide serves as an enzymatic cleavage site, hydro-
lyzed by lysosomal cathepsin B. This proteolytic process-
ing triggers a 1,6-elimination reaction mediated by the 
PABC spacer, culminating in the traceless release of the 
MMAE. This release disrupts the intracellular microtu-
bule structure, leading to cell cycle arrest and apoptosis. 
Disitamab vedotin has the capacity to induce substantial 
bystander effects, thereby enhancing its efficacy against 
solid tumors. Additionally, it interferes with transcrip-
tion, growth, and proliferation of tumor cells by inhibit-
ing downstream signaling pathways activated by HER2. 
In vitro study data have indicated that disitamab vedotin 
has ADCC effects [287, 288].

In a phase I clinical trial of HER2-urothelial carcinoma, 
four eligible patients received disitamab vedotin treat-
ment. Two patients experienced a partial response, and 
two had stable disease, resulting in an ORR of 50% and a 
disease control rate (DCR) of 100% [289]. The disitamab 
vedotin was administered to eight patients with locally 
advanced mUC in the HER2-urothelial carcinoma phase 
II clinical study (NCT04073602). The dose was 2.0 mg/
kg, and the ORR was 25%, with the DCR being 75% [290]. 
These findings demonstrate that disitamab vedotin mon-
otherapy exhibits considerable anti-tumor efficacy, which 
may provide a novel therapeutic avenue for patients with 
HER2-urothelial carcinoma and HER2-positive urothelial 
carcinoma.

The combination therapy of disitamab vedotin with 
toripalimab has demonstrated significant efficacy. For 
instance, in the phase Ib/II clinical trial of disitamab 
vedotin combined with toripalimab for patients with 
locally advanced or mUC (NCT04264936), the ORR was 
80%, and the DCR was 90% [291, 292].

Disitamab vedotin has shown promising clinical out-
comes, both as a monotherapy and in combination with 
other treatments, across a range of cancers, including 
urothelial carcinoma, biliary tract cancer, NSCLC, and 
breast cancer with HER2-positive and HER2-low expres-
sion. To extend the availability of disitamab vedotin ther-
apy to more patients with HER2-positive tumors, further 
elucidation of the anti-tumor mechanism, enhanced tar-
geting, and specific PK/PD studies for disitamab vedotin 
are required to support clinical decision-making.

Tisotumab vedotin
In September 2021, the FDA approved the use of tiso-
tumab vedotin in the treatment of adult patients with 
recurrent or metastatic cervical cancer (R/M CC). It 
consists of a fully human mAb targeting TF and MMAE 
linked via a cleavable mc-Val-Cit-PABC linker, with an 
average DAR of 4. In vivo, tisotumab vedotin binds to TF 
on the surface of tumor cells. After receptor-mediated 
internalization, the Val-Cit dipeptide acts as an enzymatic 
cleavage site, which is hydrolyzed by lysosomal cathepsin 
B. This proteolytic processing triggers a 1,6-elimination 
reaction mediated by the PABC spacer, culminating in 
the traceless release of the MMAE. MMAE inhibits tubu-
lin polymerization, disrupts cell division, induces cell 
growth arrest, and triggers apoptosis. Additionally, tiso-
tumab vedotin exhibits a range of effector mechanisms, 
including a bystander effect, ADCC, ADCP, and CDC 
[293, 294].

The phase III INNOVATV 301 study demonstrated that 
tisotumab vedotin, leveraging its unique dual mechanism 
combining targeted therapy and cytotoxic chemotherapy, 
exhibited significant clinical advantages compared to 
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second-line or third-line chemotherapy regimens in the 
treatment of R/M CC. Specifically, it achieved a median 
OS of 11.5 months versus 9.5 months, a 12-month OS 
rate of 48.7% versus 35.3%, an mPFS of 4.2 months ver-
sus 2.9 months, an ORR of 17.8% versus 5.2%, and a DCR 
of 75.9% versus 58.2%. Additionally, it had a relatively 
lower incidence of grade ≥ 3 adverse events (45.2% versus 
29.2%) [295, 296].

A phase Ib/II study (NCT03786081) demonstrated 
that tisotumab vedotin, when combined with bevaci-
zumab, pembrolizumab, or carboplatin, exhibited man-
ageable safety profiles and promising antitumor activity 
in both treatment-naïve and previously treated patients 
with R/M CC. Specifically, the ORR was 54.5% for first-
line tisotumab vedotin plus carboplatin (arm D), 40.6% 
for first-line tisotumab vedotin plus pembrolizumab 
(arm E), and 35.3% for second/third-line tisotumab 
vedotin plus pembrolizumab (arm F). Grade ≥ 3 adverse 
events occurring in ≥ 15% of patients were anemia, diar-
rhea, nausea, and thrombocytopenia in arm D, and ane-
mia in arm F (no adverse events occurred in ≥ 15% of 
patients in arm E) [297].

Tisotumab vedotin, as the first and only approved ADC 
targeting TF, has demonstrated significant efficacy and 
safety in adult patients with R/M CC. Subsequent clinical 
investigations will further explore its therapeutic poten-
tial in other solid tumors, offering new possibilities and 
hope for oncology.

Mirvetuximab soravtansine
In November 2022, the FDA granted accelerated 
approval to mirvetuximab soravtansine for the treatment 
of adult patients with FRα-positive, platinum-resistant 
ovarian cancer (PROC), platinum-resistant fallopian 
tube cancer (PRFTC), and platinum-resistant peritoneal 
cancer (PRPC) who have received one to three prior sys-
temic treatment regimens. The drug is composed of a 
chimeric anti-FRα mAb of the IgG1 conjugated to DM4 
via a sulfo-SPDB linker, with an average DAR of 3–4. Fol-
lowing internalization through FRα receptor-mediated 
endocytosis, mirvetuximab soravtansine enters either the 
lysosome or the cytoplasm, where intracellular reducing 
agents such as GSH cleave the disulfide bonds, releasing 
DM4. This disrupts the intracellular microtubule net-
work, leading to cell cycle arrest and apoptosis. Further-
more, it has been demonstrated to elicit bystander effects 
[298–300].

A single-arm, phase II study (NCT04296890) is under-
way to evaluate the efficacy and safety of mirvetuximab 
soravtansine in patients with PROC. Among the 104 
patients with the disease who received mirvetuximab 
soravtansine treatment, the ORR was 32.4%. The median 

duration of response was 6.9 months, demonstrating sig-
nificant therapeutic efficacy [301]. Consequently, mir-
vetuximab soravtansine received approval in November 
2022.

The combination of mirvetuximab soravtansine with 
other drugs has demonstrated efficacy for ovarian cancer 
treatment. For instance, in FRα-high platinum-sensitive 
ovarian cancer (PSOC), the combination of mirvetuxi-
mab soravtansine with bevacizumab yielded promising 
outcomes, including an ORR of 69%, an mPFS of 13.3 
months, and a median duration of response (mDOR) of 
12.9 months. Furthermore, histological analysis of ovar-
ian xenograft tumors demonstrated that mirvetuximab 
soravtansine in combination with other drugs can induce 
rapid (within 30 days) and extensive necrosis (over 
50%) of tumor tissue. This synergy results in a coopera-
tive anti-proliferative effect on ovarian cancer cell lines 
in  vitro when mirvetuximab soravtansine is combined 
with other agents, such as carboplatin, doxorubicin, and 
bevacizumab [302, 303].

This is the first approved targeted therapy for FR 
α-positive, PROC, and also the first ADC approved for 
ovarian cancer. However, it has certain adverse reac-
tions, such as ocular toxicity, which has been included 
in the U.S. Prescribing Information (USPI) with a boxed 
warning to alert physicians about potential severe ocular 
issues [304]. Therefore, the development of effective and 
low-toxicity ADCs for ovarian cancer treatment remains 
a challenge for researchers to overcome.

ADCs in phase III clinical trials
Currently, 24 ADCs are undergoing phase III clinical tri-
als (Table  2). Compared to currently marketed ADCs, 
HER2 remains the most extensively studied target, 
accounting for eight out of 24 ADCs. Moreover, ADCs 
in phase III clinical trials are exploring several emerging 
targets, including receptor tyrosine kinase-like orphan 
receptor 1 (ROR1), carcinoembryonic antigen-related 
cell adhesion molecule 5 (CEACAM5), mesenchymal-
epithelial transition factor (MET), epithelial cell adhesion 
molecule (EpCAM), integrin alpha V beta 6 (ITGB6), 
CD276, and cadherin 6 (CDH6) (Fig.  4d). In terms of 
antibody structure, oportuzumab monatox utilizes a 
humanized single-chain variable fragment (scFv-κ light 
chain), whereas the majority of others employ the IgG1 
format. Notably, innovative linker technologies have 
been incorporated into phase III ADCs, such as ARX-
788 utilizing a hydroxylamine-PEG4 linker and FS-1502 
employing a geranyl ketone pyrophosphate oxime liga-
tion linker. Regarding payloads, there are notable differ-
ences between phase III clinical trial ADCs and those 
already on the market, with a marked increase in Top1 
inhibitors. The proportion of Top1 inhibitors has reached 
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parity with tubulin inhibitors, comprising 45.8% of all 
payloads (Fig.  6h). Among the 24 ADCs, zilovertamab 
vedotin is being evaluated for the treatment of hema-
tological malignancies, whereas the remaining ADCs 
are being investigated for their efficacy in treating solid 
tumors. Within the phase III trials, most are actively 
recruiting participants, although four projects have 
announced their completion. These completed trials 
include trastuzumab duocarmazine (NCT03262935), 
depatuxizumab mafodotin (NCT02573324), tusami-
tamab ravtansine (NCT04154956), and oportuzumab 
monatox (NCT02449239).

Trastuzumab duocarmazine (SYD985) represents a 
next-generation ADC targeting HER2. Trastuzumab 
duocarmazine consists of a human IgG1 mAb targeting 
HER2, conjugated to seco-DUBA via a cleavable mc-
PEG2-Val-Cit-PABA-Cyc linker, with an average DAR 
of 2.8 [172]. It is internalized, releasing DUBA, which 
induces cell apoptosis by disrupting nucleic acid struc-
tures in both dividing and non-dividing cells [305, 306]. 
In an international phase III trial (NCT03262935), a 
cohort of 437 patients with advanced HER2 + BC, who 
had experienced disease progression during or following 
at least two HER2-targeted therapies or after treatment 
with T-DM1, were randomly allocated in a 2:1 ratio to 
receive either trastuzumab duocarmazine (T-Duo group, 
n = 291) or treatment of the physician’s choice (PC group, 
n = 146). The findings demonstrated a median PFS of 7.0 
months versus 4.9 months, a median OS of 20.4 months 
versus 16.3 months, and an ORR of 27.8% versus 29.5%. 
Moreover, clinical benefit rate, DOR, and reduction in 
target lesion measurements generally favored the T-Duo 
group. These results suggest that T-Duo significantly 
reduces the risk of disease progression in patients with 
advanced HER2 + BC compared to the PC group. The 
incidence of grade ≥ 3 adverse events was 52.8% in the 
T-Duo group and 48.2% in the PC group, indicating that 
while the T-Duo treatment is manageable, its tolerability 
is compromised by ocular toxicity, which contributes to 
a higher discontinuation rate in the T-Duo group [307].

Depatuxizumab mafodotin (ABT-414) is comprised of 
a mAb that targets activated EGFR, including both over-
expressed wild-type and EGFRvIII-mutant forms, con-
jugated to MMAF via a non-cleavable MC linker, with 
an average DAR of 3.8. After internalization, depatuxi-
zumab mafodotin releases MMAF within lysosomes, 
disrupting the microtubule network, causing cell cycle 
arrest and apoptosis [308]. In the phase III clinical trial 
(NCT02573324), 639 patients with newly diagnosed 
EGFR-amplified glioblastoma (GBM) were allocated in 
a 1:1 ratio to receive either radiotherapy, temozolomide, 
and ABT-414 or placebo. The findings showed a median 
OS of 18.9 months in the ABT-414 group compared to 

18.7 months in the placebo group. however PFS was 
longer in the ABT-414 group (8.0 months) than in the 
placebo group (6.3 months). Additionally, corneal epi-
theliopathy occurred in 94% of ABT-414-treated patients 
(61% grade 3–4), causing 12% to discontinue treatment. 
These results indicate that although no new significant 
safety concerns were identified, the use of ABT-414 in 
treating newly diagnosed GBM with EGFR amplification 
did not provide an OS benefit [309].

Tusamitamab ravtansine (SAR408701) is composed of 
a humanized antibody targeting CEACAM5, conjugated 
to DM4 via a cleavable SPDB linker, with an average DAR 
of 3–4 [310]. The cleavage of the SPDB linker releases 
DM4 into the tumor cell. DM4 subsequently inhibits 
microtubule assembly, resulting in cell cycle arrest and 
apoptosis. Additionally, it can spread to nearby cell sur-
faces, causing a bystander effect [311]. In an open-label, 
randomized, phase III clinical trial (NCT04154956), 389 
participants with metastatic NSCLC who had previously 
undergone standard platinum-based chemotherapy and 
immune checkpoint inhibitor therapy were allocated in a 
1:1 ratio to receive either SAR408701 (n = 194) or doc-
etaxel (n = 195). Participants in the SAR408701 group 
were administered 100 mg/m2 every two weeks, while 
those in the docetaxel group received 75 mg/m2 every 
three weeks [312]. This was evidenced by a median PFS 
of 5.39 months versus 5.85 months, and an OS of 12.81 
months versus 11.53 months, while an ORR of 21.7% 
versus 24.1%. Additionally, the times to deterioration 
of disease-related symptoms (2.8 vs 1.9 months), physi-
cal functioning (7.5 vs 4.2 months), and role function-
ing (5.6 vs 4.2 months) were numerically prolonged 
with SAR408701 compared to docetaxel. The incidences 
of adverse events of grade ≥ 3 (14.9% vs 39.5%), serious 
treatment-related adverse events (6.2% vs 20.3%) were 
lower with SAR408701 than with docetaxel [313]. These 
results indicate that SAR408701 did not meet its primary 
objective of independent review committee-assessed PFS 
but showed a positive trend on the OS at this interim 
analysis. Additionally, SAR408701 demonstrated a safety 
profile that is favorable compared with docetaxel.

Oportuzumab monatox (Vicinium) is an ADC com-
posed of a recombinant fusion protein oportuzumab, 
which directly conjugates with ETA-252–608 (a trun-
cated form of PEA) and targets the epithelial cell adhesion 
molecule (EpCAM). ETA-252–608 inhibits peptide chain 
elongation, thereby suppressing protein synthesis and 
triggering apoptosis in host cells. Concurrently, the tumor 
neoantigens generated from apoptotic tumor cells can 
be recognized by T cells, thereby activating the immune 
system to attack tumor cells [314]. Vicinium is cur-
rently being developed for the treatment of Bacillus Cal-
mette-Guérin (BCG)-unresponsive non-muscle-invasive 
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bladder cancer (NMIBC) and has the potential to serve 
as an alternative to radical cystectomy (RC). In a phase 
III trial (NCT02449239), 133 patients were enrolled, 
including those with refractory or relapsing within 6 
months (n = 126) and relapsing within 6 to 11 months 
(n = 7) after adequate BCG therapy. During induction, 
vicinium was administered for 2 h twice weekly for 6 
weeks, then weekly for another 6 weeks. Patients with-
out disease at 3 months received maintenance treatment 
every 2 weeks for up to 2 years. This was evidenced by a 
CR rate of 40% in the evaluable carcinoma in  situ (CIS) 
patients at 3 months, with a median DOR of 9.4 months. 
Of the 3-month CIS responders, 52% remained disease-
free for 12 months after starting treatment. The 3-month 
responders remained RC-free for 34.0 months compared 
to 20.7 months for non-responders. Furthermore, the 
rate of RC was only 10% for the 3-month responders ver-
sus 32% for the non-responders. Preliminary OS was 96% 
at 2 years. Vicinium was well-tolerated with only 52% of 
patients experiencing treatment-related adverse events, 
the majority being grade 1–2. Moreover, only 3% of the 
patients discontinued treatment due to adverse events 
[315]. These results demonstrated that vicinium was well-
tolerated, clinically meaningful anti-tumor activity, and 
may delay and/or prevent RC.

The majority of clinical trials involving ADCs are pre-
dominantly focused on oncology, with approximately 87% 
of these trials situated in the early stages of development. 
Beyond oncology, recent advancements have broadened 
the applications of ADCs to non-cancerous conditions, 
such as autoimmune diseases, chronic bacterial infec-
tions, and atherosclerosis. Furthermore, the recent FDA 
approval of antibody therapies for Alzheimer’s disease 
has spurred interest in exploring ADCs for neurologi-
cal disorders. To surmount the challenge posed by the 
blood–brain barrier (BBB), researchers are intensively 
exploring endogenous macromolecule transport mecha-
nisms, such as receptor-mediated endocytosis (RMT) 
and carrier-mediated transport systems [316]. Moreover, 
novel delivery strategies, including ultrasound-induced 
BBB disruption, microbubble-assisted permeabilization, 
and direct intracranial administration, have garnered sig-
nificant attention. The burgeoning research on brain-tar-
geting ADCs underscores the pharmaceutical industry’s 
growing interest in this innovative therapeutic modality. 
These developments highlight the expanding applicability 
of ADCs beyond oncology, demonstrating their potential 
to address a wild array of intricate medical challenges.

Challenges and limitations of ADCs
ADCs are widely recognized as a promising strategy for 
cancer treatment. However, Their clinical application 
is hindered by certain limitations. The complexity of 

ADC preparation technology resulted in an 11-year gap 
between the approval of the first ADC and the introduc-
tion of the second generation. To date, despite over 200 
ADCs being under clinical investigation, only 15 have 
been approved, highlighting that ADC development 
remains in its infancy. While third- and fourth-genera-
tion ADCs have demonstrated improvements in stabil-
ity, specificity, therapeutic index, and reduced off-target 
toxicity, significant challenges persist, including adverse 
reactions, drug resistance, and other unresolved issues. 
Consequently, the conjugation and preparation technolo-
gies of ADCs necessitate continuous development and 
refinement to enhance their efficacy and safety profiles.

The adverse reactions associated with ADCs are com-
plex and multifaceted. Based on their incidence and 
severity, these reactions can be classified as either unpre-
dictable or common. Unpredictable toxicities, such as 
neutropenia, ocular toxicity, thrombocytopenia, anemia, 
gastrointestinal damage, and musculoskeletal side effects, 
present significant challenges in the clinical application 
of ADCs. Furthermore, tumor heterogeneity, particularly 
with regard to antigen expression, remains a critical fac-
tor contributing to resistance against ADCs. For example, 
resistance mechanisms linked to sacituzumab govitecan 
have been attributed to genomic variations in antigen 
targets such as TROP2 (including mutations, copy num-
ber alterations, and structural variations), which may 
lead to reduced antigen expression, increased drug efflux, 
and enhanced resistance mechanisms [317]. To address 
these challenges, emerging strategies focus on enhanc-
ing mAbs, payloads, linkers, and coupling technologies, 
which in turn improves therapeutic efficacy and miti-
gates drug resistance. The specificity of the mAb is cru-
cial because off-target binding may lead to unintended 
toxicities. Therefore, identifying more specific targets is 
essential for advancing ADC research and development. 
Additionally, the cytotoxicity of payloads can cause spe-
cific adverse effects, such as neuropathy and thrombocy-
topenia. The types of cytotoxic agents used in ADCs are 
currently limited, and more novel and effective payloads 
will be subjected to closer scrutiny in the future devel-
opment of ADCs. The stability of the linker impacts the 
location and timing of payload release, thereby influenc-
ing both therapeutic efficacy and adverse outcomes. The 
method of conjugation, which determines the hetero-
geneity of the DAR, is directly associated with pharma-
cokinetics, therapeutic effectiveness, and the potential 
for adverse effects [318]. Combining ADCs with immu-
notherapies has demonstrated considerable promise, as 
ADCs can induce immunogenic cell death and enhance 
T-cell infiltration, thus augmenting the effects of check-
point inhibitors. BsADCs represent another innova-
tive strategy, enabling dual targeting to overcome the 
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limitations caused by insufficient expression of single 
antigens.

In conclusion, ADCs have experienced substantial evo-
lution spanning four technological generations. The key 
components of ADCs, such as mAbs, linkers, payloads, 
and conjugation technologies, are currently undergoing 
rapid advancements, thereby laying a solid foundation 
for future research and development in this field. Over 
the past three decades, clinical data have consistently 
highlighted the substantial potential of ADCs in treat-
ing both hematological malignancies and solid tumors. 
Compared to conventional chemotherapy, ADCs demon-
strate enhanced specificity, efficacy, and safety. Achiev-
ing an optimal balance among these parameters during 
ADC design is critical for maximizing therapeutic effi-
cacy, minimizing side effects, and broadening the range 
of therapeutic applications. It is expected that innovative 
advancements in linkers, payloads, and targeting strate-
gies will expand the clinical application of ADCs beyond 
oncology. The ongoing development of next-generation 
drug conjugates will undoubtedly provide enhanced ben-
efits to patients.
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