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Abstract 

Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multi-
faceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic 
and functional transformation upon interacting with tumor cells and their presence can adversely influence treat-
ment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) 
studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene 
expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, 
including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provi-
sion of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness 
and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immu-
nosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowl-
edge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential 
as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, 
interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. 
An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effec-
tive targeted therapies for cancer.
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Graphical abstract

Introduction
During the development of the mammalian embryo, 
normal fibroblasts (NFs) that are important for form-
ing connective tissues of the body can originate from the 
primitive mesenchyme and share a common embryonic 
lineage with other mesenchymal cell types, such as adi-
pocytes, chondrocytes, and osteoblasts [1]. In normal 
physiological conditions, fibroblasts serve as primary 
contributors to the extracellular matrix (ECM) of con-
nective tissues and are central to the process of tissue 
repair during stress and in injury states where, in such 

situations, these cells are activated in response to sig-
nals and tissue damage [2–4]. Beyond their reparative 
roles, fibroblasts also facilitate angiogenesis by secreting 
vascular endothelial growth factor A (VEGFA) [5–7], as 
well as orchestrate immune system functions through the 
release of chemokines and cytokines [7–11].

In cancer states, fibroblasts are known to constitute a 
significant component of the tumor stroma. Moreover, 
fibroblasts within tumors have been found to undergo 
phenotypic as well as functional transformation, typically 
observed as a result of interactions with resident tumor 

Table 1 Frequently used makers for identifying CAFs

Marker Biological function Functions of CAFs Specificity Refs

PDPN Transmembrane glycoprotein involved 
in cellular adhesion and signaling

Promotes resistance to EGFR-TKIs; initi-
ates tertiary lymphoid structure (TLS) 
formation

Expressed in epithelial tumor 
cells, inflammatory macrophages, 
and CAFs

[19, 91,92,138, 
204]

FSP1/S100A4 Calcium-binding protein that regulates 
cell motility and metastasis

Modulates malignant cell metabolism 
via FAK-mediated pathways; expression 
correlates with poor prognosis

Highly expressed in prostate cancer 
and breast cancer (BC)

[15, 21, 22, 32, 
129]

PDGFRα/β Tyrosine kinase receptors that mediate 
growth factor signaling

Drives immune suppression, angiogen-
esis, and hormone therapy resistance

Expressed on fibroblasts, neural pro-
genitors, pericytes, and astrocytes

[16, 115, 122, 
163, 252]

αSMA Highly conserved protein essential 
for cytoskeletal integrity and contractil-
ity

Defines myofibroblast contractility; 
regulates ECM remodeling

Expressed in smooth muscle cells, 
pericytes, and activated CAFs

[4, 17, 18, 42]

FAPα Type II transmembrane serine protease 
whose expression is linked to tissue 
repair and fibrosis

Remodels ECM; suppresses immunity; 
expression is associated with poor 
prognosis

Expressed during wound healing, 
in fetal placenta, and CAFs

[77, 87, 100, 
160–162, 173, 
176]
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cells and, as such, these “cancer-associated fibroblasts 
(CAFs)” have been found to influence the tumor micro-
environment (TME) [13, 14]. Despite our current under-
standing of CAFs, their precis identification continues to 
pose a challenge, owing to a lack of definitive molecular 
markers that distinguish them from other cells, as well as 
from embryonic mesenchyme [15–18]. Indeed, molecu-
lar markers such as α-SMA, fibroblast activation protein 
(FAP), platelet-derived growth factor receptor (PDGFR) 
and podoplanin (PDPN), have all been employed to facil-
itate the identification of CAFs [19–22]. Typically, these 
markers are combined with lineage markers to enable 
negative selection, through the exclusion of epithelial 
cells, tumor cells, myeloid-derived cells, endothelial cells 
[23, 24]. A list of typical molecular markers for CAFs is 
provided in Table 1.

The importance of CAFs in cancer development is 
underscored by their roles in multiple hallmarks of can-
cer, including ECM formation, tumor cell proliferation, 
invasion, metastasis, angiogenesis, and immune suppres-
sion [13]. Moreover, the heterogeneity of CAFs within 
the TME adds a further dimension of complexity to their 
functions [25]. Studies using single-cell RNA sequencing 
(scRNA-seq) have identified distinct subsets of CAFs that 
feature unique gene expression profiles and functional 
properties. These subsets, such as myofibroblastic CAFs 
(myoCAFs), inflammatory CAFs (iCAFs), and antigen-
presenting CAFs (apCAFs), have been found to influence 
tumor progression and immune responses in different 
ways, through a variety of mechanisms including the 
secretion of specific cytokines, chemokines, and ECM 
components [26–30].

In this review, we comprehensively describe the multi-
faceted roles of CAFs in cancer development. Moreover, 
we focus on the latest findings on the complex hetero-
geneity of CAFs and plasticity within the TME. Also, 
we review the potential for CAFs as therapeutic targets, 
discuss the emerging strategies to target CAFs in can-
cer treatment. Taken togther, through our exploration of 
the complex interplay between CAFs and the TME, we 
bring attention to current efforts that could lead to the 
development of more effective and targeted therapies for 
cancer.

Origins of CAFs and their activation
CAFs are known to derive from resident fibroblasts 
within normal tissues, however they have also been 
described to arise from the cellular transformation of 
adipocytes, pericytes, stellate cells, pericryptal cells, 
mesothelial cells, mesenchymal stem cells (MSCs) [31–
34]. Continuous observations of the transformation 
process, from normal epithelia to atypical hyperplasia 
to invasive carcinoma, have revealed a concomitant 

proliferation and dysfunction of fibroblasts. Notably, 
cultured NFs have been found to be transformed into 
CAFs under certain conditions, such as when exposed 
to conditioned media (CM) derived from tumor cells, 
or under hypoxia conditions, or upon exposure to 
TGFβ, or through the addition of cancer-derived exo-
some preprations [35–38]. For example, in breast can-
cer (BC), resident human mammary fibroblasts can 
transform into myoCAFs via autocrine TGF-β which 
binds to TGF-β I/II receptor and activates TGFβ/Smad 
signaling pathway. Moreover, such signalling in these 
cells also promotes CXCL12 secretion, which addition-
ally forms a positive feedback loop through CXCR4 
stimulation. Thus, TGF-β and CXCL12 concurrently 
induce myoCAFs through an autostimulatory mecha-
nism as well as through their signalling cross-commu-
nication [39].

In addition to myoCAFs, studies have shed light on 
the origins of other CAFs subtypes. For example, in 
mouse models of colitis-associated colorectal can-
cer (CRC), it has been reported that cells expressing 
the pericryptal leptin receptor (Lepr) proliferate and 
transform to CAFs that express the melanoma cell 
adhesion molecule (MCAM), and such CAFs promote 
an immune suppressive TME [40, 41]. In separate sce-
nario, pancreatic stellate cells (PSCs), when activated, 
transform into αSMA-expressing CAFs that secrete 
factors that promote tumor growth, cell survival, and 
metastasis [42]. Moreover, in pancreatic ductal car-
cinoma (PDAC), mesothelial cells have been found to 
transform into apCAFs under the regulation of IL-1 
and TGFβ, and this was associated with downregula-
tion of mesothelial features and upregulation of fibro-
blastic features [43]. Also, in prostate cancer, TGF-β1 
secreted by tumor cells and tumor stroma recruits 
MSCs to the tumor tissue site and induce their differ-
entiation into CAFs [44]. Furthermore, in breast cancer, 
Wnt3a derived from tumor cells induces adipocytes to 
transform into adipocyte-derived fibroblasts (ADFs) 
[32]. In ovarian cancer, Eckert et al. discovered through 
a proteomic analysis study that Nicotinamide N-meth-
yltransferase (NNMT) expression is essential for the 
functional aspects of cancer-associated fibroblasts 
(CAFs), including their expression of CAF markers, 
cytokine secretion characteristics, and their production 
of carcinogenic extracellular matrix molecules. Mech-
anistically, the expression of NNMT in CAFs leads to 
S-adenosylmethionine (SAM) depletion, reduced his-
tone methylation, and widespread gene expression 
changes in cells of the tumor stroma. Accordingly, 
knockdown of NNMT in CAFs resulted in morpho-
logical changes such that they more closely resembled 
normal stromal fibroblasts, and this visual feature was 
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concomitant with a reduction in the expression of CAF 
markers [45]. Taken together, these examples show-
case the diverse cellular origins for CAFs and how each 
distinct CAF subtype shapes their functional speciali-
zation within the TME (Fig.  1). This topic is further 
explored below.

Approaches to studying CAFs
The approaches to studying CAFs can be considered to 
comprise four interconnected strategies, namely: (1) iso-
lation via primary culture or cytokine-induced differen-
tiation [42, 46, 47] (Fig.  2A); (2) animal models such as 
genetically engineered mouse models (GEMMs) (e.g., 
KPC model for PDAC) that model spontaneous car-
cinogenesis and enable conditional CAFs depletion as 
well as xenograft transplantation [48–53] (Fig.  2B); (3) 
in  vitro systems (2D/3D co-culture, CM analysis, orga-
noids) or in vivo co-implantation to dissect tumor-CAF 
interactions at the cellular and molecular levels [54–61] 
(Fig. 2C); (4) combinations of classical techniques (such 
as immunohistochemistry, flow cytometry) with emerg-
ing tools (such as scRNA-seq and spatial transcriptom-
ics (ST)) to reveal complex molecular functions of CAFs 
within the tumor microenvironment [62] (Fig. 2D).

Multifaceted roles of CAFs in cancer development
Modulation of the ECM
CAFs are the primary contributors to ECM formation 
through synthesis and deposition of collagen fibers [32]. 
A study analyzing collagen expression across distinct 
CAFs subtypes has elucidated that CAF subtypes possess 
unique collagen expression profiles. For example, myo-
CAFs are characterized by the expression of collagens 
such as COL10A1 and COL11A1, while iCAFs predomi-
nantly express COL14A1 [26]. In another example, Lam-
brechts et al. performed a scRNA-seq to define five CAFs 
clusters in non-small cell lung cancers (NSCLCs). Clus-
ter 1 expressed COL10A1 and shows high expression of 
ECM proteins and TGF-β-related genes, while Cluster 2 
was found to express COL4A1, along with high levels of 
ACTA2, MEF2C, MYH11 expression [62]. Through their 
role in ECM deposition, CAFs can create a physical bar-
rier that hinders the entry of immune cells as well as ther-
apeutic agents into the tumor tissue and, as such, protect 
tumor cells from immune system attacks and anti-tumor 
treatment [47] (Fig. 3A).

The ECM remodeling mediated by CAFs is also known 
to influence tumor invasion. CAFs can secrete matrix 
metalloproteinases (MMPs), which are zinc-dependent 

Fig. 1 Origins of CAFs. CAFs may originate from various cell types including pericytes, adipocytes, stellate cells, mesothelial cells, epithelial cells, 
endothelial cells, mesenchymal Stem Cells (MSCs) and normal fibroblast. This figure was created with BioRender.com



Page 5 of 31Jia et al. Journal of Hematology & Oncology           (2025) 18:36  

endopeptidases that degrade ECM components such as 
collagens, fibronectin, elastin and laminin, so as to facili-
tate stromal degradation and tumor cell invasion [63, 
64]. Studies of cocultures of carcinoma cells and stromal 
fibroblasts have revealed that fibroblasts predominantly 
serve as lead cells during invasion, while carcinoma 
cells trail behind, navigating along pathways in ECM 
generated by the lead fibroblasts. As such, fibroblasts 
are shown as pivotal for facilitating cancer cell invasion 
through a mechanims that involves protease-driven and 
force-mediated reorganization of the ECM [65]. Of the 
molecular players involved, caveolin-1 (Cav1) is a mem-
brane-associated protein that plays a crucial role cell 

signaling in the process, as well as in ECM reconstruc-
tion, and tumor progression [66]. Indeed, expression of 
Cav1 in CAFs enhances cell elongation in 3D cultures 
via p190RhoGAP, promoting force-dependent contrac-
tion, matrix alignment. Cav1-deficient mice exhibit stro-
mal disorganization, while Cav1-rich stroma in human 
carcinomas and melanoma metastases promotes tumor 
aggressiveness [60]. Moreover, GP130-IL6ST and JAK1 
stimulate RhoA-dependent actomyosin contractility in 
both tumor cells and CAFs, leading to matrix reconstruc-
tion and enhanced tumor cell migration. Notably, inhibi-
tion of the signaling axis that comprises these key factors 

Fig. 2 Methodology for studying CAFs. (A) CAFs may be obtained through primary culture, or transformation from other cells, such as normal 
fibroblasts or pancreatic stellate cells (PSCs), for further researches. (B) Animal models of CAFs include patient-derived xenografts (PDX) 
and transplanted tumor models established from cell lines. Genetically engineered mouse models (GEMMs) can spontaneously develop 
tumors, better simulating the interaction between CAFs and TME. These genetically engineered mice also allow for the specific elimination 
of CAF subsets using drugs such as diphtheria toxin, as well as lineage tracing of CAF subsets through the expression of specific markers. (C) 
In vitro approaches to study CAF-TME interactions include 2D/3D co-culture, conditioned media transfer, and tumor organoid models. In vivo 
methods involve co-inoculation of CAFs and tumor cells. (D) CAF research integrates techniques such as western blotting (WB), flow cytometry, 
and immunofluorescence. Advanced tools like single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics provide deeper functional 
insights. This figure was created with BioRender.com
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may be crucial for developing interventions that effec-
tively block tumor cell invasion [67] (Fig. 3B).

The balance between ECM deposition and degradation 
is crucial for maintaining ECM homeostasis, but this bal-
ance can be dysregulated in tumor microenvironments 
[68] (Fig.  3C). Moreover, CAFs secrete enzymes that 
facilitate collagen cross-linking which, in turn, further 
enhances the rigidity of the ECM. The stiffness of tumor 
tissues is generally significantly higher than that of nor-
mal tissues [69], and this stiffness of the ECM has been 
shown to promote tumor progression by restricting drug 
penetration, limiting the infiltration of immune cells, and 
activating signaling pathways such as integrin-mediated 
focal adhesion kinase (FAK/SRC) signaling as well as 
mechanotransduction pathways (e.g. Rho-GTPase, ERK, 
YAP/TAZ) [70–72]. For instance, studies of the impact 
of stiffness on cultured intrahepatic cholangiocarcinoma 
(ICC) and hepatocellular carcinoma (HCC) cells showed 
that numbers were higher at 16 kPa stiffness rather than 

at 2 kPa, and that such cells appearred more robust and 
appeared to be accompanied by features such as a more 
regular actin arrangement and higher YAP1 content 
[69]. In a cohort of 107 colorectal cancer patients, the 
median overall survival (OS) of the low-stiffness group 
was significantly longer than in the high-stiffness group 
(54.38 ± 2.64  months vs 64.05 ± 1.00  months, P = 0.007) 
[73]. Recently, Zheng et al. revealed that in PDAC, matrix 
stiffness could drive tumor proliferation through gly-
colytic metabolism via upregulated CLIC1 expression 
mediated by the Wnt/β-catenin/TCF4 signaling path-
way [74]. Through digital pathology analysis, Maiques 
et  al.  found that the morphology of extracellular matrix 
fibers increased from the tumor core to the invasive 
front, and that fibres appeared longer and denser. The 
changes in fibers at the invasive front induced tumor cell 
cytoskeletal reconfiguration through the Rho-ROCK-
MLC2 pathway, and promoted cell contraction, reduced 
adhesion, and induced pseudopod-like behaviors. In 

Fig. 3 CAFs modulate ECM to promote tumor growth. (A) CAFs promote the deposition of extracellular matrix, forming a physical barrier 
that hinders immune cell infiltration and drug penetration, thereby creating obstacles for anti-tumor treatment. (B) CAFs remodel ECM, facilitating 
tumor cell invasion and metastasis. (C) CAFs regulate the balance between dense ECM and loose ECM, thus promoting cancer progression. This 
figure was created with BioRender.com
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another example, it was reported that a “mechanical-
inflammation signature” (MIS) gene set was upregulated 
at the invasive front and associated with poor patient 
prognosis [75]. Zheng et  al.  found through scRNA-seq 
that PDGFRα + ITGA11 + CAFs are associated with 
vascular invasion and lymph node metastasis in early-
stage bladder cancer by promoting collagen deposition 
as well as enhancing the migratory ability of tumor cell 
spheroids via the glycoprotein CHI3L1. Notably, treat-
ment that combined CHI3L1-neutralizing antibodies 
and ITGA11-neutralizing antibodies could inhibit vascu-
lar invasion in early BC [76]. While the current evidence 
largely supports the notion that ECM stiffness exerts a 
tumor-promoting effect, a few studies have conversely 
found that a reduction in ECM components could facili-
tate tumor progression [77–79]. For example, in PDAC 
models, an anti–lysyl oxidase like-2 (anti-LOXL2) anti-
body decreased matrix content and this was associated 
with accelerated tumor growth and lower tissue stiffness 
[78]. One possible explanation is that ECM remodeling 
involves intricate signaling networks, such that a reduc-
tion in ECM stiffness caused by specific factors might 
paradoxically trigger compensatory pro-tumorigenic 
signaling pathways. For example, Hedgehog signaling 
blockage reduces the stroma in PDAC, but accelerates 
tumor progression through increased blood vessel for-
mation [80]. Further research is needed to further clarify 
these issues.

Components of the ECM, such as CTGF and integrins, 
play complex roles in signal transduction. For exam-
ple, blocking CTGF signaling can enhance the efficacy 
of chemotherapy without altering the effective concen-
tration of gemcitabine, through an effect that is accom-
panied by a reduction in the expression of X-linked 
inhibitor of apoptosis protein (XIAP) [81]. Remarkably, a 
recent study shows that in PDAC organoids, hyaluronic 
acid (HA) interacts with the CD44 receptor which, in 
turn, promotes the expression of drug efflux transport-
ers, leading to chemotherapy resistance. Moreover, this 
resistance can be reversed by transferring the organoids 
from high-stiffness to low-stiffness matrices, and such 
findings offer a novel strategy for improving chemother-
apy resistance by targeting the ECM [82].

CAFs interact with multiple immune cell types 
within the TIME (Tumor immune microenvironment)
CAFs have been found to have interactions with multi-
ple immune cell types in the TIME, including effector T 
cells, regulatory T cells (Tregs), tumor associated mac-
rophages (TAMs), tumor associated neutrophils (TANs), 
and myeloid derived suppresor cells (MDSCs) [83, 84], as 
explained further below.

Effector T cells and Tregs
CAFs can inhibit the functions of effector T cells through 
the production of immunosuppressive factors such as 
IL-6, CXCL9, CXCL12 and TGFβ, and by direct cell–cell 
interaction through PD-1/PD-L1 receptor signaling [36, 
85, 86] (Fig. 4A). In PDAC that arises in the KPC mouse 
model, CXCL12 secreted by FAPα + CAFs is the primary 
cause of immunosuppression, where CD8 + T cells do not 
respond to anti-CTLA-4 and anti-PD-L1 therapies [87]. 
In studies of human esophageal carcinoma, the num-
bers of CAFs are negatively associated with the presence 
of CD8 + tumor infiltreated lymphcytes (TILs). Co-
implantation of CT26 cells and CAFs have been shown 
to result in accelerated tumor growth, accompanied with 
decreased CD8 + T cells and increased FoxP3 + TILs 
[88]. Recently, a study that utilised ST and scRNA-seq by 
Song et  al.  revealed that CAFs suppress the infiltration 
and function of effector T cells by expressing CXCL12 
and PD-L1, a mechanism maintained via autocrine IGF2. 
This finding is consistent with clinical studies that show 
that high expression of IGF2 is associated with subopti-
mal outcomes of anti-PD-1 therapy. Indeed, targeting the 
IGF2/IGF1R signaling pathway with the inhibitor linsi-
tinib can significantly enhance the efficacy of immune 
checkpoint inhibitors (ICIs) [89].

Although the immunosuppressive roles of CAFs are 
well appreciated, some studies also suggest certain sub-
groups of CAFs may even play an immune promotive 
role. In PDAC, depletion of αSMA + myofibroblasts 
led to invasive, undifferentiated tumors with increased 
CD4 + Foxp3 + Tregs, suggesting their role in promoting 
anti-tumor immunity [90]. A subgroup of PDPN + CAFs 
were reported to be able to induce the initiation and 
expansion of tertiary lymphoid structures (TLSs) that 
could enhance the efficiency of immune surveillance 
and locally potentiate immune responses against tumor 
antigens. Notably, these TLSs were found to often cor-
relate with increased numbers of mature dendritic cells 
and robust T-cell infiltration [91, 92]. Through scRNA-
seq and ST analysis of HCC samples, it was found that 
tumors from patients with a good response to immuno-
therapy exhibited more infiltration of CCL19 + fibroblasts 
and plasma cells. This co-localization was associated with 
T-cell infiltration and the formation of TLSs. In contrast, 
in immune-exclusion samples, DKK1 + tumor cells accu-
mulated at the tumor boundary, inhibiting the infiltration 
of CCL19 + fibroblasts and plasma cells into the tumor 
area [93]. Thus, the interactions between CAFs and effec-
tor T cells and Tregs remain to be better understood.

Tumor‑associated macrophages (TAMs)
CAFs can recruit and induce monocyte differentiation 
into M2-like TAMs through cytokines such as CXCL12, 
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CCL5, IL-6, IL-33, GM-CSF and glycoprotein Chitinase-
3-like-1 (Chi3L1) [41, 94–99] (Fig.  4B). Besides, CAFs 
increase macrophage adhesion through interactions 
between the class A scavenger receptor (SR-A/CD204) 
and cleaved type I collagen, which is selectively cleaved 

by FAP expressed on CAFs [100]. Furthermore, in triple 
negative BC (TNBC), CAFs recruit and reprogram blood 
monocytes into an immune suppressive lipid associated 
macrophage (LAM) subset via the CXCL12–CXCR4 
axis, which is marked by STAB1 as well as high TREM2 

Fig. 4 CAFs modulate the tumor immune microenvironment (TIME). (A) CAFs inhibit the function of effector T cells by secreting IL-6, CXCL12, 
TGF-β, and by expressing PD-L1; they also recruit regulatory T cells (Tregs). (B) CAFs recruit macrophages through cytokines such as IL-6, 
CXCL12, and IL-33, and promote M2 polarization and inducing immunosuppresive subses like lipid-associated macrophages (LAMs). (C) CAFs 
promote N2 polarization of TANs, upregulate PD-L1, and stimulate neutrophil extracellular trap (NET) formation. (D) CAFs enhance infiltration 
of monocytic (M-MDSCs) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) via tumor-derived CSF-1. This figure was created 
with BioRender.com
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expression. This LAM subset has been reported to be 
expanded in patients refractory to immune checkpoint 
blockade (ICB). In preclinical models, genetic depletion 
of these LAMs leads to TNBC tumor growth suppression 
[101].

HIF2 expression in CAFs is known to induce the immu-
nosuppressive environment of PDAC. Studies using 
scRNA-seq have showed that recruitment of MDSC in 
CAF-HIF2 knockout tumors was inhibited in this con-
text. Accordingly, the proportion of M2-polarized TAMs 
were decreased in CAF-HIF2 knockout tumors [52]. In 
HCC, POSTN + CAFs attract and induce macrophages 
to SPP1 + TAM via the IL-6/STAT3 signaling pathway, 
which in turn hinders the effective infiltration of T-cells 
and diminishes the efficacy of immunotherapy. Patients 
with increased expression of both POSTN + CAFs and 
SPP1 + macrophages showed poorer therapeutic out-
comes in an immunotherapy cohort [102]. Similarly, in 
the case of gastric cancer (GC), it has been shown that 
thrombospondin 2 (THBS2)-expressing matrix CAFs 
(mCAFs) promote the recruitment of peritoneum-
specific macrophages, which then differentiate into 
SPP1 + TAMs through the C3-C3AR1 axis which, in turn, 
disrupts this signaling axis and enhances the efficacy of 
ICIs [103].

The interplay between CAFs and TAMs is recipro-
cal, such that TAMs also affect the functions of CAFs. 
In PDAC, IL-33-stimulated macrophages secret CXCL3, 
which induce the transition of myoCAFs and upregulates 
α-SMA expression thorugh activation of the CXCL3–
CXCR2 signaling pathway [104]. M2 polarization of 
TAMs increases their capability to modulate the EMT in 
CAFs, resulting in their enhanced reactivity [105].

Tumor‑associated neutrophils (TANs)
In HCC, CAFs secrete CXCL12, which recruits neutro-
phils and also upregulates their PD-L1 expression via 
a IL6-JAK-STAT3 signaling pathway. These activated 
PD-L1 + neutrophils exert a tumor-promoting effect by 
suppressing T-cell immunity [106]. Similar findings were 
reported in GC, in that myeloid stem cells differenti-
ate into CAFs upon stimulation from neutrophils. The 
former reciprocally activate neutrophils through IL-6–
STAT3–ERK1/2 signaling cascade [31]. Moreover, CAFs 
produced cardiotrophin-like cytokine factor 1 (CLCF1), 
which stimulated the secretion of CXCL6 and TGF-β 
from tumor cells. These secreted factors subsequently 
facilitated TAN infiltration and N2 polarization through 
a paracrine mechanism [107].

In addition to secretion of CXCL12, CAFs are known 
to secrete amyloid β to stimulate the formation of neu-
trophil extracellular traps (NETs) by a reactive oxygen 

species (ROS)-mediated pathway, which facilitates tumor 
progression [108]. Also, pancreatic cancer cells can trig-
ger the formation of NETs, which subsequently induce 
hepatic stellate cells into CAFs. In liver metastasis 
mouse models, DNase I, an inhibitor of NETs, effectively 
suppressed the occurrence of liver metastasis in  vivo 
(Fig. 4C) [109].

Myeloid‑derived suppressor cells (MDSCs)
In liver cancer, CCL2 secreted by FAP + CAFs could 
promote tumor growth by enhancing the recruitment 
of MDSCs via a STAT3 signaling pathway, which is 
abolished in Ccr2-deficient mice or by exposure to 
the CCR2 inhibitor, sc-202525 [46, 110]. By secret-
ing CXCL16, CAFs attract monocytes that then differ-
entiate into monocytic MDSCs, activating the tumor 
stroma and exacerbating TNBC aggressiveness [111]. 
The expression of granulocytic chemokines in CAFs 
is downregulated by HDAC2, induced by tumor cell 
derived CSF1. This downregulation restricts the migra-
tion of polymorphonuclear myeloid-derived suppres-
sor cells (PMN-MDSCs) towards tumors. Interventions 
with CSF1R inhibitors disrupt this crosstalk, leading 
to a marked enhancement in the recruitment of PMN-
MDSCs to tumor sites which, in turn, contributes to 
immunosuppression [112–114] (Fig. 4C).

Angiogenesis
CAFs are capable of secreting a variety of angiogenic 
regulators such as VEGFA, platelet-derived growth 
factor-C (PDGF-C), fibroblast growth factor 2 (FGF2), 
CXCL12, and WNT2 [115–120]. A study by Orimo 
et  al.  found that CAFs co-planted with human BC 
MCF-7 cells resulted in significantly increased tumor 
vascular density. Further analysis revealed that CAFs 
could recruit endothelial progenitor cells (EPCs), a 
bone-marrow derived stem cell population, into the 
tumor by releasing CXCL12 which, in turn, resulted in 
an increase in the number of EPCs within the tumor. 
Experiments using in vivo approaches have found that, 
this process of EPC recruitment into tumors could be 
inhibited by neutralizing antibodies against CXCL12, 
thereby inhibiting tumor growth [121]. In a separate 
study utilising a CRC xenograft mouse model, over-
expression of WNT2 resulted in increased tumor ves-
sel density and tumor volume. Mass spectrometry 
and cytokine array analyses collectively revealed that 
WNT2 overexpression resulted in upregulation of the 
expression proteins associated with pro-angiogenic 
functions, including extracellular matrix molecules, 
ANG-2, IL-6, G-CSF, and placental growth factor 
(PGF) [120]. A cohort study of 535 prostate cancer 
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patients who underwent surgery showed that PDGFRβ 
is expressed in the stromal tissues of prostate cancers, 
and that high expression was associated with poor 
prognosis [122]. Moreover, in a cervical cancer model, 
PDGF expressed by cancer cells activate PDGFR on 
CAFs, and this promoted their release of FGF which, 
in turn, enhanced angiogenesis. Studies have shown 
that inhibition of PDGFR signaling with a small molec-
ular inhibitor Imatinib could be effective to suppress 
the growth of invasive carcinomas [115, 123, 124].

Collectively, by secreting a variety of angiogenic 
factors, CAFs can recruit and activate cells related to 
angiogenesis, such as endothelial cells and monocytes. 
These cells then gather and proliferate at the tumor 
site and form new vascular networks that provide 
essential nutrients and oxygen that further support 
tumor growth and metastasis. These studies shown 
that, by facilitating the formation of new blood vessels 

in tumors, CAFs enhance the metastatic capability 
of tumors. Thus, targeting CAFs or their capacity for 
facilitating angiogenesis may be a therapeutic avenue 
for intervention in some cancers [125].

The interplay between CAFs and tumor cells
Regulation of metabolism
Recent studies indicate that CAFs are key regulators in 
modulating tumor cell metabolism, particularly through 
the regulation of pathways for glucose, amino acid, and 
lipid metabolism [126, 127] (Fig. 5A). A lipid-rich CAFs 
subset marked by Abca8a expression has been identified 
in SETD2-deficient pancreatic tumors through scRNA-
seq experiments. Notably, loss of SETD2 activates the 
BMP2 signaling pathway through ectopic gene expres-
sion, thereby promoting the differentiation of lipid-rich 
CAFs. These ABCA8a-expressing lipid-rich CAFs can 
promote tumor growth by transfer of lipids and can 

Fig. 5 Interplays between CAFs and tumor cells. (A) CAFs fuel tumor cell glycolysis via CCL6 and CCL12 secretion; In addition, Abca8a + CAFs 
facilitate tumor cell growth by secreting lipid droplets. (B) CAFs enhance tumor proliferation and therapy resistance through IL-6, HGF, and FGF2 
secretion, and via exosomal long non-coding RNAs (lncRNAs). (C) CAFs induce epithelial-mesenchymal transition (EMT) via Hedgehog ligands, 
TGF-β, and HGF. (D) CAF-derived exosomes containing miR-522 suppress lipid peroxidation to inhibit ferroptosis. (E) Complement component 5a 
(C5a) activates GPR77 + CAFs, inducing tumor stemness via IL-6, IL-8, and TGF-β. This figure was created with BioRender.com
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support oxidative phosphorylation by tumor cells [128]. 
In another example, FSP + CAFs have been shown to 
increase glycolysis in malignant cells through FAK sign-
aling. Indeed, FAK depletion in CAFs leads to increases 
in levels of CCL6, CCL11, CCL12 and pentraxin-3, which 
altogether enhance glycolysis by malignant cells through 
activating protein kinase A via CCR1/CCR2 [129]. More-
over, secretion of acetate, a metabolic product, by CAFs 
serves as a critical driver for the accelerated growth of 
PDAC cells under low pH conditions. Acetate, mediated 
by acetyl-CoA synthetase 2 (ACSS2), induces acetylation 
of histones and the oncogenic SAT1 gene, upregulating 
its expression through epigenetic regulation. It has been 
shown that knockdown of SAT1 expression levels signifi-
cantly inhibits PDAC cell growth rates and impairs their 
survival under low pH conditions. The ACSS2–SP1–
SAT1 regulatory axis is a pivotal mechanism by which 
CAF-derived acetate fuels PDAC cell survival and prolif-
eration, underscoring its potential as a therapeutic target 
for intervention [130].

CAFs directly promoting tumor growth and treatment 
resistance
CAFs have been suggeseted to directly promote tumor 
growth by enhancing cancer cell proliferation and treat-
ment resistance through IL-6 (Fig. 5B). In studies of co-
cultures with ductal carcinoma in situ (DCIS) cells, CAFs 
have been reported to facilitate the formation of multi-
cellular structures via paracrine IL-6 signaling [57]. In the 
context of esophageal cancer, IL-6 is aberrantly expressed 
in fibroblasts and epithelial cells, and its levels have been 
found to increase in co-cultures of cancer cells and CAFs, 
resulting in tumor progression [88, 131]. In BC, CAFs 
promote cancer cell proliferation and radioresistance via 
IL-6 secretion through the STAT3 pathway, and support 
cancer progression by secreting hepatocyte growth fac-
tor (HGF) and FGF2 via paracrine signaling [132–134]. 
Additionally, in the context of high dose cancer chemo-
therapy, CAFs have been found to secrete chemokines 
that mediate treatment resistance and tumor growth, 
while low-dose metronomic therapy is suppressive for 
such pro-cancer signaling [135]. Furthermore, exosomes 
derived from CAFs that contain LncRNAs such as miR-
500a-5p and miR-181d-5p have been found to promote 
tumor growth through epigenetic mechanisms [136, 137]. 
Co-culture of PDPN + CAFs with cancer cells induced 
the resistance of such cells to EGFR-TKIs, and this 
effect was reversed by knockdown of PDPN expression. 
Accordingly, patients with PDPN + CAFs showed signifi-
cantly lower response rates to EGFR-TKIs (53% vs. 83%; 
P < 0.01), suggesting that a better understanding of this 
subtype of CAFs may be key to enhancing the efficacy of 
EGFR-TKIs in cancer [138]. In squamous cell carcinoma, 

activation of nuclear receptors (NRs) in CAFs are asso-
ciated with resistance to chemotherapy. While cisplatin 
alone showed limited efficacy, combination therapies 
with NRs antagonists such as LE135 and bicalutamide 
significantly delayed tumor growth and enhanced treat-
ment efficacy by modulating CAF-driven processes like 
invasiveness, proliferation, and energy metabolism [139]. 
Taken together, while these examples show the capacity 
for CAFs to directly influence tumor growth and treat-
ment resistance, the extent through which CAFs exert 
such direct effects across cancers remains unclear.

CAFs promote EMT
EMT is an important biological process in which tumor 
cells transform from epithelial-like cells into mesen-
chymal-like cells that are associated with specific fea-
tures including enhanced migration and tissue invasion 
(Fig. 5C) [58, 140]. Studies of co-cultures of PDAC cells 
with CAFs have found that such mixtures of these cell 
types results in a remarkable transcriptional heteroge-
neity at the single-cell level, yet appears to foster gene 
expression signatures reminiscent of EMT and pro-
genitor (PRO) phenotypes within PDAC cell lines [141]. 
CAFs have been reported to promote EMT through 
cytokines such as Hedgehog ligand, TGFβ, HGF, IL6 
and IGF-1 [34, 37, 142, 143]. When co-cultured with 
CAFs, Panc01 cells exhibit EMT features characterized 
by their increased invasive ability, expression of Vimen-
tin and decreased expression of E-cadherin, features of 
which could be blocked by inhibiting Hedgehog signal-
ing. Co-culture with CAFs or addition of CM from CAFs 
can also promote EMT in BC and bladder cancer [37, 
143, 144]. Mechanistically, CAFs induce EMT through 
the phosphorylation of annexin A2 (ANXA2) mediated 
by HGF and IGF-1 [145]. Moreover, TGFβ secreted by 
CAFs have been found to induce EMT through an epi-
genetic mechanism involving the lncRNA ZEB2NAT 
and HOTAIR [146, 147]. A recent pan-cancer transcrip-
tomic analysis showed that most THBS family genes are 
upregulated in cancer tissue samples at advanced stages 
of disease. Immunohistochemistry and multiplex immu-
nofluorescence experiments have revealed that THBS2 is 
primarily localized in the regions where CAFs reside, and 
its expression is higher in patients who are unresponsive 
to oxaliplatin treatment. Molecular docking and Co-IP 
experiments confirm that COL8A1 that is secreted by 
THBS2 + CAFs, interacts with ITGB1 and this, in turn, 
activates the PI3K-AKT signaling pathway to promote 
EMT, and leading to oxaliplatin resistance in colorec-
tal cancer. Thus a THBS2 + CAFs-COL8A1-ITGB1 axis 
might be an important consideration in the development 
of therapeutic interventions for reversing chemotherapy 
resistance in this form of cancer [148].
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Regulation of programmed cell death by CAFs
Programmed cell death (PCD) is an important cellular 
mechanism in tumor cell biology, and can significantly 
influence tumor initiation and progression, as well as 
enhance or curtical the efficacies of tumor treatments 
and immunotherapies [149–151]. Studies have demon-
strated that CAFs can regulate the levels of ferroptosis 
by tumor cells through secretion of exosomes containing 
miR-522. When these CAF-derived exosomes are inter-
nalized by tumor cells to deliver miR-522, this results 
in the post-transcriptional inhibition of expression of 
ALOX15, a protein involved in lipid peroxidation regu-
lation. Indeed, this reduction of ALOX15 reduces the 
accumulation of lipid ROS and inhibits the occurrence of 
ferroptosis [152] (Fig. 5D).

CAFs maintaining cancer stem cell property
CAFs have been reported to modulate the properties of 
cancer stem cells (CSCs) in scirrhous GC, through the 
TGFβ signaling pathway (Fig. 5E). In BC, NF-κB activa-
tion through GPR77-mediated complement signaling 
induces a subgroup of CD10 + GPR77 + CAFs, which 
promote tumor growth and chemoresistance by nurtur-
ing CSCs through secretion of IL-6 and IL-8 [153]. More-
over, CM derived from CAFs enhanced the formation of 
spheroid colonies and upregulated the expression of CSC 
markers in OCUM-12/SP and OCUM-2MD3/SP cells. 
The level of phospho-Smad2 was elevated upon co-cul-
turing with CAFs, and the stimulatory effects observed 
with CAF-derived CM were attenuated by the application 
of TGFβ inhibitors [154]. In murine models of TNBC, 
neoplastic cells produce Hedgehog ligands that repro-
gram CAFs to promote a chemo-resistant, CSC pheno-
type. This reprogramming involves FGF5 expression and 
increased production of fibrillar collagen [155]. Together, 
these lines of evidence indicate that CAFs could directly 
modulate the features of CSCs so as to influence tumor 
growth and progression.

Heterogeneity and plasticity of CAFs
In recent years, the emerging data provided by scRNA-
seq has facilitated the discovery of an increasing num-
ber of subpopulations of CAFs that are deinfed by their 
diverse features and unique functions. Yet, due to the lack 
of definitive molecular markers for CAFs, our current 
understanding of the spectrum of reported subpopula-
tions across different studies remains to be clarified [25]. 
Table  2 summarizes the features of currently reported 
CAF subpopulations, as shown.

When considering the expression levels of αSMA and 
the spatial relationships with tumor cells, two CAFs sub-
sets, myoCAFs and iCAFs, are identified in PDAC. Myo-
CAFs are located immediately adjacent to neoplastic 

cells and promote disease progression by producing 
pro-tumoral cytokines and participate in the formation 
of desmoplastic stroma. On the other hand, iCAFs are 
typified by their low expression of αSMA and are located 
further away from tumor cells and affect the tumor 
microenvironment by secreting IL-6 and other inflam-
matory mediators [26]. Moreover, myoCAFs and iCAFs 
show pleiotropic effects when exposed to certain fac-
tors. For example, IL-1 and TGF-β that is secreted from 
cancer cells have been found to antagonistically regulate 
the transformation of CAFs subsets in opposing ways. 
Notably IL-1 activates the JAK/STAT signaling pathway 
by inducing the expression of leukemia inhibitory factor 
(LIF), leading to the generation of iCAFs; while TGF-β 
inhibits the IL-1-induced JAK/STAT signaling pathway 
by downregulating the expression of IL-1 receptor 1 
(IL-1R1), promoting the differentiation of CAFs towards 
myoCAF subtype [156].

Schwann cells are another source of IL-1α that promote 
the transformation of myoCAFs into iCAFs [27]. Upon 
inhibition of the Hedgehog pathway or NF-κb signaling 
pathway with the IRAK4 inhibitor CA-4948, the compo-
sition of CAFs transitions from myoCAFs to iCAFs [28, 
29]. In addition, a recent study found that inhibition of 
TAK1 leads to decreased IL-6 expression in CAFs and 
increased α-SMA expression, and this promoted the 
conversion of iCAFs to myoCAFs which was concomi-
tant with enhanced anti-tumor immune responses. This 
mechanistic switch thus positions TAK1 as a strategic 
therapeutic target within CAFs that could be explored 
further to determine the effectiveness of combining 
TAK1 inhibitors with ICIs in the treatment of PDAC 
[157]. Furthermore, along with these two subsets, studies 
using scRNA-seq have led to the identification of another 
CAF subset that is marked by its expression of MHC class 
II molecules and costimulatory molecules, which activate 
T-cells and promote anti-tumor immune responses, and 
thus named antigen-presenting CAFs (apCAFs) [29, 30, 
158, 159].

FAP expression combined with other markers, can 
identify multiple CAF subtypes that typically exhibit 
immunosuppressive effects [160–162]. In BC, four 
CAFs subsets described which were identifiable 
through their expression of a series markers includ-
ing FAP, CD29, aSMA, S100-A4/ FSP1, PDGFRb, and 
CAV1. The subset one (CAF-S1) was characterized 
by high FAP expression, promoted immunosuppres-
sion by secreting CXCL12, attracting CD4 + CD25 + T 
lymphocytes and retaining them through expres-
sion of OX40L, PD-L2, and JAM. Morevoer, CAF-S1 
also prolonged T lymphocyte survival and facilitated 
their differentiating into Tregs, through expression of 
B7H3, CD73, and DPP4 [163]. Also, a CAFs population 
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marked by co-expression of FAP + PDPN + is predomi-
nantly located at the tumor periphery near T cells and 
inhibits their proliferation via nitric oxide [164]. Corre-
spondingly, a high ratio of S100A4 + to PDPN + CAFs is 
predictive of good prognosis across subtypes [165]. In 
studies of 4T1 and 4T07 orthotopic TNBC models, the 
heterogeneity of CAFs subsets was found to gradually 
diminish with toumor progression, with CD26 + CAFs 
and FAP + CAFs becoming the dominant subsets 
observed in the latter stages of tumor growth [23]. In 
PDAC, FAP + CAFs promote the growth of pancreatic 
cancer tumors through CXCL12 and CCL2 signaling, 
while αSMA + CAFs mainly inhibit tumor growth and 
contribute to the polarization of tumor-infiltrating 
T-cells, as revealed by studies using scRNA-seq [166].

In recent years, the advent of scRNA-seq has led to 
the identification of an increasing number of CAF sub-
populations in cancer. Bartoschek et. al. grouped CAFs 
from BC mouse models into four subgroups, including 
vascular CAFs (vCAFs), matrix CAFs (mCAFs), cycling 
CAFs (cCAFs) and developmental CAFs (dCAFs). In 
cohorts derived from the TCGA database, the sig-
natures of vCAF and mCAF were both independ-
ent prognostic factors for BC patients [24]. Studies 
of the Panc02 tumor model have found that, gemcit-
abine chemotherapy upregulates placental growth 
factor (PlGF), and induces CD141 + CD74- CAFs 
[86]. In loose-type PDAC, a subgroup of CAFs with a 
highly activated metabolic state (meCAFs) marked by 
PLA2G2A and CRABP2 expression was discovered, 
which increased activity of immune cells [79]. Moreo-
ver, a subset of myoCAFs marked by RGS5 + has been 
found to be crucial to the formation of metastatic 
lesions, predominantly in hepatic metastasis tissues 
[167]. Also, a lipid-rich CAFs subpopulation marked by 
ABCA8a in pancreatic tumors with SETD2 deficiency 
metabolically supports the growth and survival of 
tumor cells [128]. In addition, LRRC15 + CAFs, which 
rely on TGFβ signaling, play a pivotal role in establish-
ing the tumor-fibroblast equilibrium that fosters tumor 
expansion. Notably, these cells exert a direct inhibitory 
effect on CD8 + T-cell function, thereby constraining 
the efficacy of ICB therapies [36]. Neutralization of 
TGFβ reshaped CAFs subpopulations, with decreased 
frequency and activity of myoCAFs, while promoting a 
CD73 + CAF population that exhibited strong response 
to interferon and enhanced immunomodulatory prop-
erties, which improved efficacy of PD-1 immunother-
apy [168]. Using multi-omics techniques, two CAF 
subtypes were identified in prostate cancer regulated 
by: immunosuppressive ECM-associated CAFs (ECM-
CAFs), and lymphocyte-associated CAF (Lym-CAFs) 
that promoted anti-tumor immunity. YAP1 is a key 

factor that regulates the transition from Lym-CAF to 
ECM-CAF phenotype by directly interacting with IKKα 
to inhibit the activation of NF-κB p65 (also known as 
RelA). Indeed, selective depletion of YAP1 in ECM-
CAFs may be a potential strategy through which to sig-
nificantly enhance the therapeutic effects of anti-PD-1 
antibodies in some cancers [169].

Therapeutic implications of CAFs
Therapies that target CAFs can be categorized into four 
primary approaches: targeting the ECM generated by 
CAFs, directly eliminating CAFs marked by their spe-
cific gene expression signatures, interrupting the cross-
talk between CAFs and the TME, and normalizing CAFs 
[170–172]. Studies using preclinical models have dem-
onstrated promising anti-tumor effects of CAF-targeted 
treatments and this has led to clinical studies, however 
effective treatments remain to be determined through 
large-scale Phase III clinical trials [98, 168, 173–176]. 
Strategies to targeting CAFs for cancer therapy are sum-
marized in Tables 3 and 4.

Targeting CAF‑derived ECM to treat cancer
HA is a major glycosaminoglycan in PDAC stroma, ele-
vates interstitial fluid pressure and compromises vascular 
perfusion, limiting chemotherapeutic delivery. PEGPH20 
is a pegylated recombinant hyaluronidase enzyme that 
targets HA. Studies shows PEGPH20 reduces tumor-
associated hyaluronan, which can enhance drug delivery, 
decrease tumor interstitial pressure, and improve vas-
cular permeability [177, 178]. Preclinical and phase I/Ib 
studies have demonstrated that PEGPH20 in combina-
tion with gemcitabine was well-tolerated and may have 
therapeutic benefits [179]. Although early studies have 
shown effectiveness, a phase III study (HALO 109–301) 
found that while the addition of PEGPH20 to nab-pacli-
taxel/gemcitabine increased the objective response rate 
(ORR), it did not improve OS or progression free sur-
vival (PFS) in patients with hyaluronan-high metastatic 
PDAC [180–182]. Losartan is a commonly used angio-
tensin II receptor blocker, originally used to treat high 
blood pressure by blocking the angiotensin II receptors 
to dilate blood vessels [183]. More recently, it has been 
demonstrated to exhibit anti-tumor effects by target-
ing the tumor stroma, reducing collagen and hyaluronan 
production, and consequently decreasing solid stress in 
tumors, which leads to improved vascular perfusion and 
drug delivery which, in turn, potentiates chemotherapy 
in BC and PDAC models [184, 185]. Moreover, losartan 
improves the penetration and effectiveness of nanothera-
peutics in desmoplastic tumors by inhibiting collagen 
production [186]. Additionally, in a single-arm phase 2 
clinical trial, it was associated with a high R0 resection 
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rate when incorporated into a total neoadjuvant therapy 
regimen for locally advanced pancreatic cancer [187]. 
Tranilast is a TGF-β inhibitor, originally approved as an 
anti-allergic drug used to treat allergic diseases [188]. 
Tranilast exhibits antitumor effects by normalizing the 
TME, improving tumor perfusion and oxygenation, and 
enhancing the efficacy of both nanomedicine and immu-
notherapy [189, 190]. As a further example, Metformin, 
a widely used medication primarily prescribed for the 
treatment of type 2 diabetes, and the anti-fibrotic drug 
Pirfenidone, have both been found to reduce ECM pro-
duction by inhibiting the activation of CAFs [191–195].

Hedgehog signal pathway plays a vital role in ECM 
deposition. In a hypo-perfused gemcitabine-refractory 
mouse model of PDAC, coadministration of IPI-926, a 
hedgehog inhibitor, increased tumor vasculature and 
gemcitabine concentration, leading to temporary disease 
stabilization [196]. In phase I trials, treatment with IPI-
926 showed preliminary efficacy, but this approach failed 
in a phase II trial [197–200]. Similarly, in phase Ib and 
phase II trials, another antagonist, vismodegib, also failed 
to enhance the ORR, PFS or OS in patients with meta-
static PDAC in combination with gemcitabine [201, 202]. 
Lee et al. showed that modulation of Hedgehog pathway 
disrupts the balance between epithelial and stromal ele-
ments, leading to accelerated growth of epithelial cancer 
cells, which may explain its failure in clinical trials [203].

ROCK, a protein kinase involved in cell migration and 
ECM synthesis, is overexpressed in pancreatic cancer 
cells and CAFs, suggesting it may be a therapeutic target 
[204]. Fasudil is a ROCK inhibitor that is primarily used 
to treat cerebral vasospasm and has shown potential in 
various other conditions, including cancer, due to its 
effects on cell motility and smooth muscle contraction. 
Inhibition of ROCK with fasudil reduced tumor collagen 
deposition, enhanced survival, and increased chemo-
therapy uptake, highlighting the potential of targeting 
tumor stroma to enhance treatment efficacy in pancreatic 
cancer [205, 206]. Therefore, targeting ECM produced 
by CAFs may be a viable approach to cancer, but futher 
research is necessary to develop their clinical application 
as an effective treatment option.

Targeting signaling pathways relevant to cross‑talk 
between CAFs and TME
Many growth factors, interleukins, chemokines and 
other cytokines such as TGFβ, IL1, IL6, CXCL12, CCL6 
are involved in signaling cross-talk between CAFs 
and TME [47, 166, 207–209] (Fig.  6D). Such factors 
are known to activate various signal pathways includ-
ing Smad, JAK-STAT, NF-κB among others to induce 
the expression of downstream genes. Since CAFs and 
the TME interact through various signaling molecules, 

specific blockade of their signaling cross-talks likely 
exerts targeted anti-tumor effects. Through this line 
of reasoning, many targeted drugs for these signaling 
pathways have been evaluated in preclinical or clini-
cal studies for such effects [87, 210–213]. Although the 
initial purpose of developing these drugs may not have 
been specifically for use to affect CAFs, they can still 
potentially be repurposed for application due to their 
ability to interfere CAF signaling [214].

It is known that expression of IL-6 is significantly 
increased by αSMA + CAFs during gemcitabine treat-
ment. When the IL-6 signaling pathway was blocked, 
the combined use of gemcitabine and ICB therapies 
significantly improved the survival of mice with pan-
creatic cancer [166]. Similarly, IL-6 was found to pro-
tect GC cells from 5-fluorouracil-induced apoptosis via 
the JAK/STAT3 signaling pathway, which is reversed 
by treatment with the anti-IL6 mAb, tocilizumab [215]. 
Both pharmacological inhibition of LIF and genetic 
ablation of Lifr significantly impedes tumor progres-
sion and enhances the effectiveness of chemother-
apy, thereby prolonging survival in mouse models of 
PDAC [216]. In another scenario, the Hedgehog sign-
aling pathway is critical to promote CSCs, and there-
fore blocking this pathway can inhibit tumor growth. 
Stromal treatment of patient-derived xenografts with 
smoothened inhibitors (SMOi) effectively downregu-
lates CSC marker expression by inhibiting the Hedge-
hog signaling pathway, thus sensitizing the tumors to 
docetaxel treatment. In the phase I clinical trial EDA-
LINE, 3 out of 12 patients with TNBC derived clinical 
benefit from the combination therapy of the SMOi Son-
idegib and docetaxel chemotherapy, with one patient 
achieving a complete response [155].

CAFs contribute to the development of resistance 
against HER2-targeted therapies by secretion of FGF5, 
which triggers the activation of fibroblast growth factor 
receptor 2 (FGFR2) in adjacent BC cells. The subsequent 
transactivation of HER2 by FGFR2, mediated through 
c-Src, ultimately leads to the emergence of resistance to 
HER2-directed therapeutic interventions [217, 218]. The 
PI3K-AKT-mTOR pathway mediates the resistance of 
HER2 + BC to HER2 inhibitors through bypass activa-
tion [219]. In PDAC, inhibition of the mTOR pathway 
with Pasireotide also enhances chemotherapy efficacy 
by reducing CAFs protein synthesis and tumor growth 
[220]. Inhibition of CSF1R leads to increased PMN-
MDSC. To overcome this unfavorable effect, combina-
tion therapy of CSF1R inhibitor and CXCR2 antagonist 
is reasonable. This strategy not only halts the infiltra-
tion of granulocytes into tumors, but also demonstrates 
potent anti-tumor effects [112–114]. TGF-β1 secreted by 
CAFs activates Laminin 2 (Ln-2) through the JNK/AP1 
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signaling pathway thus contributing to immunosuppres-
sion. These effects could be blocked by the TGF-β recep-
tor inhibitor galunisertib and a neutralizing antibody 
against TGF-β1 [47].

Recently, multi-omics analyses have revealed that 
AKAP12 + CAFs in TNBC secrete IL-34, which binds 
to CSF1R on macrophages, activating the PI3K/AKT/
IL-34 signaling pathway to promote M2 polarization 
and induce an immunosuppressive tumor microen-
vironment. This is associated with resistance to PD-1 
inhibitors. Blocking the IL-34/CSF1R pathway with an 
anti-IL-34 antibody is a promising approach to improve 
the effectiveness of anti-PD-1 therapy in TNBC [221]. 
Metabolic cross-talk of CAFs and TME is associated with 
ICIs resistance. Intriguingly, an elevated NAM (nicoti-
namide)/MNAM (methylnicotinamide) ratio positively 
correlates with enhanced effector T cell function, while 
CAFs and macrophages regulate CD8 + T cell func-
tion via nicotinamide metabolism, revealing a “face-off” 
mechanism. CAFs suppress CD8 + T cell cytotoxicity by 
expressing nicotinamide N-methyltransferase (NNMT) 
and producing MNAM, which is inhibited by extracel-
lular vesicles (EVs) containing nicotinamide phospho-
ribosyltransferase (NAMPT) derived from macrophages 
via NOCTH signaling pathway. Co-administration of 
NAMPT-containing EVs significantly enhances the ther-
apeutic efficacy of anti-PD-1 therapy in GC. This strategy 
of modulating NAM metabolism to restore sensitivity 
to anti-PD-1 treatment demonstrates broad therapeutic 
potential [222]. In addition, a Phase I/II study showed 
that adding the anti-CTGF antibody Pamrevlumab to 
gemcitabine and albumin-bound paclitaxel chemother-
apy increased the ORR in unresectable PDAC (65% vs 
42%). However, subsequent Phase III clinical trials failed 
to demonstrate a benefit in OS [223, 224]. Taken together, 
these examples show potential efficiacy for the use of dis-
ruptors of cross-talk signaling between CAFs and TME 
cells to ameliorate cancer.

Elimination of specific CAF subtypes to treat cancer
A variety of CAF subpopulations marked by candidate 
gene expression have been shown to promote tumor 
growth. Thus, the elimination of CAF subtypes via the 
targeting of their specific markers could be an avenue 
to treat cancer [225] (Fig. 6C). For example, FAP + CAFs 
are associated with an immunosuppressive microenvi-
ronment, and various therapies targeting FAP have been 
explored, including monoclonal antibodies, tumor vac-
cines, radioimmunoconjugates and immunotoxin [226–
231]. Tumor cell vaccines or DNA vaccines targeting FAP 
have been found to enhance the infiltration of CD8 + T 
lymphocytes and inhibit the accumulation of immu-
nosuppressive cells in the tumor microenvironment. 

Concurrently, the number of FAP + CAFs within the 
tumor was significantly reduced [174, 175]. In a C57BL/6 
mouse model bearing MCA205 tumors expressing FAP, 
the radiolabeled drug 177Lu-FAP-2287 rapidly accumu-
lated in MCA205-mFAP tumors, resulting in significant 
tumor growth inhibition and extended survival time. 
This treatment also augmented the therapeutic efficacy 
of anti-PD-1 monoclonal antibodies. 177Lu-FAP-2287 
increased the infiltration of CD8 + T cells in the tumor, 
accompanied by the induction of STING-mediated type 
I interferon responses and elevated levels of costimula-
tory molecules such as CD86[173]. FAP-targeted CAR-T 
cells, followed by CLDN18.2-targeted CAR-T cells, 
showed enhanced antitumor activity against PDAC by 
reducing CAFs and MDSCs recruitment, and promoting 
T-cell survival in the TME. This sequential approach also 
improve clinical outcomes for PDAC [232]. OMTX705, 
an antibody–drug conjugate targeting FAP-express-
ing CAFs, induces tumor shrinkage and regression in 
NSCLC cancer models in combination with Pembroli-
zumab [233]. Photodynamic therapy suppressed tumor 
growth and improved therapeutic outcomes in preclini-
cal models, which selectively eliminates FAP + CAFs by 
FAP-specific single chain variable fragments (scFv) and 
ferritin nanoparticles conjugated with photosensitizers 
[234–237]. Besides, a subgroup of CD10 + GPR77 + CAFs 
foster tumor growth and chemoresistance, while anti-
GPR77 antibodies hinder tumor formation and restore 
chemosensitivity. Blocking GPR77 with an antibody dis-
rupts the phosphorylation and acetylation of p65, a key 
component of NF-κB, thereby inhibiting its nuclear accu-
mulation and activity. This leads to reduced secretion of 
inflammatory cytokines IL-6 and IL-8, chemoresistance, 
and CSC enrichment [153]. Recently, a subset of senes-
cent CAFs in PDAC has been shown to exhibit increased 
expression of immune-regulatory genes, contributing to 
the inhibition of anti-tumor immune responses. Elimi-
nating these senescent CAFs by ABT-199 (venetoclax),a 
BCL-2 inhibitor, increases activated CD8 + T cells in 
mouse tumors, while inducing CAF senescence had 
the opposite effect. Combining ABT-199 with immune 
checkpoint therapy significantly reduced tumor bur-
den in mice, suggesting that elimination of senescent 
CAFs through senolytic treatment may be a promising 
approach to enhance immunotherapy [238, 239].

Normalization of CAFs to treat cancer
An alternative therapeutic strategy targeitng CAFs that 
is currently explored is to induce the transformation of 
tumor-promoting CAFs into quiescent fibroblasts, or 
into CAFs subpopulations that exert tumor-suppress-
ing effects [240–242] (Fig.  6B). All-trans retinoic acid 
(ATRA), has been shown to reprogram activated PSCs 
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into a quiescent state [243–245]. Furthermore, a nanosys-
tem has been developed to co-deliver ATRA and siRNA 
targeting heat shock protein 47 (HSP47) to PSCs, simul-
taneously inducing quiescence and inhibiting extracellu-
lar matrix hyperplasia, which significantly enhances drug 
delivery and anti-tumour efficacy [246]. Minnelide, a 
derivative of triptolide reverse the activate CAFs to a qui-
escent, nonproliferative state [247]. This transformation 
disrupts the cross-talk between CAFs and tumor epithe-
lial cells, leading to a downregulation of oncogenic sign-
aling. Moreover, Minnelide has been shown to deplete 
reactive stromal fibroblasts and enhance drug delivery 
to pancreatic tumors, as evidenced in studies using both 
patient-derived xenografts and spontaneous pancreatic 

cancer mouse models [248]. Calcipotriol, a vitamin 
D receptor (VDR) ligand, effectively reprograms acti-
vated CAFs back to a quiescent state in PDAC, improv-
ing survival when combined with chemotherapy [249]. 
Scriptaid, a selective HDACs 1/3/8 inhibitor, reverses 
CAF differentiation, reducing ECM secretion, cell inva-
sion, and tumor growth in  vitro and in  vivo, suggesting 
its potential as an anti-cancer strategy [250].

Treatment with IRAK4 inhibitor CA-494 increases 
the number of iCAFs with enhanced TNF signaling, 
inflammatory response, which turns ‘cold tumor’ refrac-
tory to immunotherapy to ‘hot tumor’ with increased 
immune cells infiltration [29]. Similarly, neutralizing 
TGFβ in vivo alters CAFs dynamics, reducing myoCAFs 

Fig. 6 Therapeutic strategies targeting CAFs. (A) CAFs normalization. Treatments such as calcipotriol, ATRA, and minnelide are designed to convert 
activated CAFs into a more quiescent, normal fibroblast-like state. Another approach includes CAF subpopulations shift from tumor-promoting 
to tumor-restrain CAFs (TR-CAFs). (B) Targeting ECM generated by CAFs. Drugs such as pirfenidone, PEGPH20 and vismodegib modify ECM 
remodeling process to enhance vascular perfusion and oxygenation within the tumor, thereby facilitating drug delivery. (C) Direct depletion 
of CAFs., strategies utilizing CAR-T cells, radiopharmaceuticals, and monoclonal antibodies (ADCs) have been employed to deplete specific CAFs 
subgroups through markers such as FAP and GPR77. (D) Targeting cross-talk between CAFs and TME. Specific blockade of signal pathway involved 
in cross-talks between CAFs and TME such as TGF-β, LIF and mTOR, can exert targeted anti-tumor effects. This figure was created with BioRender.
com
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and promoting iCAFs, which correlates with enhanced 
anti-tumor immunity and PD-1 immunotherapy efficacy. 
This mechanism provides a rationale for TGFβ and PD-1 
co-blockade in cancer treatment [168]. Fgl2 from tumor 
stroma accelerates lung cancer progression by activating 
CAFs and modulating MDSCs in a mouse study, suggest-
ing its role as a therapeutic target [251]. In PKT mice, 
concurrent inhibition of MEK and STAT3 attenuated 
the iCAFs phenotype expressing Il6/Cxcl1 and myoCAFs 
phenotype expressing Lrrc15. While Ly6a/Cd34 + CAFs 
exhibited mesenchymal stem cell-like characteristics 
were enriched. The addition of MEKi + STAT3i to PD-1 
blockade significantly improves antitumor responses and 
survival rates in PKT mice. Importantly, this combination 
achieved clinical benefits in a patient with chemother-
apy-refractory metastatic PDAC [98]. The PDGFR inhibi-
tor, Dasatinib, partially reversed the gene expression 
profile of CAFs, making it more similar to the phenotype 
of NFs. Specifically, 64 genes that were highly expressed 
in CAFs were downregulated, 26 genes that were lowly 
expressed in CAFs were upregulated, and it blocked the 
tumor-promoting effects of CAF-conditioned medium 
[252]. Recently, a study suggests that autophagy can pro-
mote CAFs into a quiescent state, with reduced secretion 
of IL-6 and upregulated expression of PD-L1 on tumor 
cells, thus enhancing the efficacy of ICIs. The combina-
tion of anti-PD-L1 and CQ-MSC-Lipo (a biomimetic 
drug delivery system carrying autophagy inhibitor chlo-
roquine diphosphate) which specifically targets to CAFs 
effectively suppressed tumor growth [253]. Besides, 
Mazzeo et  al. through ChIP-seq found that androgen 
receptor negatively regulates ANKRD1, which plays a 
negative regulatory role in the early stages of CAF acti-
vation. Treatment of CAFs with ANKRD1-targeting 
antisense oligonucleotides (ASOs) led to the simultane-
ous downregulation of ANKRD1 and key CAFs effector 
genes such as ACTA2, COL1A1, INHBA, and HAS2. 
This significantly reduced the proliferation of co-cultured 
SCC cancer cells, and corresponding in  vivo validation 
was also obtained in mouse models. Therefore, target-
ing ANKRD1 with ASOs could be a feasible approach to 
restoring CAF activation and inhibiting tumor progres-
sion [254].

Future Perspectives
With the rapid development of cutting-edge technolo-
gies such as scRNA-seq, ST, spatial pathology analysis, 
and organoid models, the complex interactions of CAFs 
within the TME are gradually being unveiled [82, 89, 
93, 157, 221, 255, 256]. These cutting-edge technologies 
allow for a comprehensive understanding of the diversity 
of CAFs as well as their functions, both at the single-cell 
level as well as the spatial levels. The advent of scRNA-seq 

has revolutionized our understanding of the remarkable 
heterogeneity, plasticity, and context-dependent roles 
for CAFs across tumor types. However, while single-cell 
technologies excel at cataloging cellular diversity, they 
inherently lack spatial context, and this limitation affects 
our ability to map CAF interactions within the architec-
tural and functional niches of the TME [257]. One pre-
diction is that emerging technologies that can clarify the 
spatial pathology of tumors will be an important new 
frontier for CAF research, and this challenge could be 
addressed using spatial multi-omics technologies inte-
grated with artificial intelligence-driven tools [258, 259]. 
As an interesting example, Onder et al. recently revealed 
the physical connections between multiple TLSs and 
intratumoral T-cell tracks derived from CCL19 + CAFs in 
NSCLC. These connections were supported by CCL19⁺ 
CAFs that formed a three-dimensional (3D) network 
spanning tumor tissues which guided T-cell migration via 
CCL19 chemokine gradients, promoting the distribution 
and activation of intratumoral T cells. In a murine model, 
a coronavirus-vectored vaccine (mCOV-Flt3l-gp33) was 
used to induce CCL19⁺ CAFs, which increased TLS for-
mation and amplified anti-tumor immunity through 
interactions with CD8⁺ T cells. The discovery of this 
3D network has provided novel insights into the tumor 
immune microenvironment, and these findings lay the 
groundwork for developing fibroblast-based immuno-
therapeutic strategies in the future [260].

The clinical translation of CAF-related discoveries 
remains a critical unmet need in oncology. Despite robust 
preclinical evidence implicating CAF subsets in immune 
evasion, metabolic symbiosis, and therapeutic resistance, 
few CAF-targeted therapies have advanced to late-stage 
clinical trials. Key challenges include the functional plas-
ticity of CAFs (e.g., tumor-restrictive vs. tumor-promot-
ing subsets), biomarker paucity to stratify patients for 
stromal modulation, and off-target effects of broad stro-
mal depletion. To bridge this gap, interdisciplinary efforts 
integrating spatial multi-omics, AI-driven digital pathol-
ogy, and functional organoid models could be mobilized 
to enhance efforts in this area of exploration. Early suc-
cesses, such as the development of TAK1 inhibitors to 
reprogram IL-6-driven CAFs, underscore the potential of 
mechanistically informed strategies [157]. Concurrently, 
clinical trials must adopt composite endpoints that evalu-
ate both stromal reprogramming (e.g., ECM normali-
zation, immune infiltration) and traditional oncologic 
outcomes. By prioritizing translational pipelines that 
reconcile CAFs heterogeneity with patient-specific TME 
dynamics, we can unlock the potential for CAFs-targeted 
therapies to be developed as next-generation combina-
tion regimens that are effective for cancer.
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Conclusions
CAFs have emerged as pivotal players in the TME, 
exerting multifaceted influences on tumor progression, 
immune modulation, angiogenesis, and therapeutic 
response. In this review, we have showcased the most 
recent advances regarding the roles of CAFs in can-
cer development, as well as therapies that target CAFs. 
Indeed, therapeutic targeting of CAFs encompasses 
multiple approaches, including targeting the ECM gen-
erated by CAFs, directly eliminating CAF subtypes iden-
tified by their expression of key markers, interrupting the 
cross-talk between CAFs and the TME, and through the 
normalization of CAFs. While preclinical models have 
demonstrated promising anti-tumor effects of CAF-tar-
geted treatments, large-scale Phase III clinical trials are 
still needed to validate these findings.

While this review comprehensively synthesizes the 
current understanding of CAFs in cancer biology, sev-
eral limitations warrant acknowledgment by the field, 
such as the current lack of reliable, universal markers to 
define CAF subsets, discrepancies in findings and tumor 
progression between animal models and human tumors, 
technological gaps, as well as interpretation of preclini-
cal observations [25, 89, 257]. The ability to effectively 
address such limitations requires interdisciplinary col-
laboration, leveraging advanced spatial technologies, 
functional genomics, and biomarker-driven clinical tri-
als. Nevertheless, this review demonstrates that CAFs 
are an important therapeutic target in cancer treatment. 
A deeper understanding of their roles and their signaling 
mechanisms in cancer will facilitate the development of 
more effective and targeted therapies that exploit CAFs, 
and move this field of research closer towards the prom-
ise of novel cancer treatments.
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