CORRESPONDENCE

Open Access

Breakthroughs in treatment for hematological malignancies: latest updates on molecular glue, PROTACs and RNA degraders from ASH 2024

Na Li^{1,2}, Jianpeng Sheng^{2*} and Hong-Hu Zhu^{1,2*}

Abstract

Degrader therapies have garnered significant attention for their innovative approach to targeting and eliminating malignancy-associated proteins, holding promise for improving outcomes for patients with relapsed or refractory (R/R) hematological malignancies, especially in cases of leukemia, non-Hodgkin lymphoma, and multiple myeloma. Currently, the main categories developed based on degraders include molecular glue (such as Cemsidomide, NX-5948), PROTACs (such as BGB-16673, AC-676, KT-333), and RNA degraders (such as SKY-1214). This correspondence summarizes the preclinical and clinical updates on degrader therapies presented at the ASH 2024 annual meeting.

Keywords Targeted protein degraders, Hematological malignancies, AML, NHL, MM, Therapeutic strategies

To the editor

Degraders are novel therapeutic agents designed to target specific proteins for degradation within cells, utilizing the cell's own protein disposal system (not only the ubiquitin-proteasome system but also the autophagylysosome system). The development of degraders is an active area of research, with numerous candidates currently undergoing preclinical studies and clinical trials. This report summarizes the latest updates at the ASH 2024 annual meeting on the research of degraders.

*Correspondence: Jianpeng Sheng shengjp@zju.edu.cn Hong-Hu Zhu zhuhhdoc@163.com

¹Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020. China

²Chinese Institutes for Medical Research, Capital Medical University, Beijing 100020, China

Preclinical studies

The preclinical studies of degraders are summarized in Table 1. The landscape is predominantly shaped by molecular glue (MG) and Proteolysis Targeting Chimeras (PROTAC) modalities, with a notable emergence of new modalities such as the DAC (Degrader-Antibody Conjugate) represented by HDZ-C123A [1] and the mRNA degrader exemplified by SKY-1214 2. The majority of these compounds utilize E3 Ligase Dependent mechanisms for degradation. Notably, SKY-1214 stands out as an mRNA degrader that targets FANCL and FANCI [2]. Current preclinical research is evaluating innovative targets, with IRF4, CBP/p300, MALT1, BCR::ABL1, KAT2A/B, IRAK1/4 and others being identified as promising in broadening treatment options for various hematological disorders (Table 1). In particular, degradation may hold promise for a myriad of lymphocytic malignancies, including Multiple Myeloma (MM), Chronic Lymphocytic Leukemia (CLL), Acute Lymphoblastic Leukemia (ALL), and Non-Hodgkin Lymphoma (NHL).

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Table 1 Preclinical studies of degraders presented at ASH 2024

Compound(s)	Administration Route(s)	Modality	Target(s)	Degradation Mechanism	Disease(s)	Abstract number	
INNO-220	oral	MG	CK1α	CRBN Dependent	B-cell lymphomas	956	
dIRF4	oral	PROTAC	IRF4	CRBN Dependent	MM	155	
HDZ-C123A	-	DAC	CD123-GSPT1	CRBN Dependent	AML	156	
SH6	-	MG	ZBTB7A	CRBN Dependent	Beta-globinopathies	172	
Advanced Analogs of dCBP-1	oral	PROTAC	CBP/p300	CRBN Dependent	MM	2795	
ZE66-0205	oral	MG	MALT1	CRBN Dependent	B-cell malignancies	2783	
TGRX-3247	oral	PROTAC	BCR::ABL1	CRBN Dependent	CML	1387	
LPA81S	-	PROTAC	BCR::ABL1	CRBN Dependent	CML	4157	
WH25244	-	PROTAC	mutant BCL2, hyperphosphorylat ed BCL2, BCL-XL	VHL Dependent	CLL	2786	
MLLT1/3 degrader	oral	-	MLLT1/3	-	Advanced AML and ALL	2772	
AUTX-703	oral	-	KAT2A and KAT2B	-	AML	3585	
SKY-1214	oral	mRNA degrader	FANCL and FANCI	mRNA degradation	R/R MM and R/R NHL	2784	
Jh-XIII-05-1	subcutaneous injection	PROTAC	IRAK1/4	-	MYD88-mutated B-NHL	4359	

MG: Molecular Glue; CK1a: Casein Kinase 1 Alpha; CRBN: Cereblon; PROTAC: Proteolysis Targeting Chimera; IRF4: Interferon regulatory factor 4; GSPT1: G1 to 5 Phase Transition 1; AML: Acute Myeloid Leukemia; ZBTB7A: Zinc Finger and BTB Domain-Containing Protein 7 A; CBP/p300: CREB-b-inding protein/p300; MALT1: Mucosa-associated Lymphoid Tissue Translocation 1; CML: Chronic Myeloid Leukemia; BCL: B-cell lymphoma 2; BCX-XL: BCL-2-related gene long isoform; VHL: Von Hippel-Lindau; MLLT1/3: Myeloid Leukemia Lineage-specific Transcription Factor 1/3; KAT2A: Lysine Acetyltransferase 2 A; KAT2B: Lysine Acetyltransferase 2B; FANCL: FA Complementation Group 1; FANCI: FA Complementation Group 1; RAKT/4: Interleukin-1 Receptor-associated Kinase 1/4

In addition to the first-in-class degrader compounds presented at ASH 2024, recent research advancements on previously reported degrader compounds were also highlighted, as detailed in the supplementary materials Table S1.

Clinical trials

Table 2 provides a detailed overview of the results from clinical trials of degraders presented at the ASH 2024 conference. BGB-16,673 targets BTK (Bruton's Tyrosine Kinase) and is undergoing Phase 1/2 clinical trials. It is being tested for R/R waldenström macroglobulinemia (WM) with 22 participants (NCT05006716) and for R/R CLL/small lymphocytic lymphoma (SLL) with 49 participants. BGB-16,673 demonstrated an impressive overall response rate (ORR) of 90% in patients with R/R WM [3] and a 78% ORR in those with R/R CLL/SLL [4]. NX-5948 also targets BTK and is in phase 1a/b trials for R/R B-cell malignancies, showed a 76.7% ORR in patients with R/R CLL (NCT06691828) [5]. AC676, another PROTAC targeting BTK, is in phase 1 clinical trials for R/R B-cell malignancies(NCT05780034) [6]. Cemsidomide, which targets IKZF1/3 (Ikaros Family Zinc Finger Proteins 1 and 3), is in phase 1/2 trials for NHL with 20 patients and for R/R MM with 32 patients, achieved a 25% ORR in NHL patients [7], many of which being T-cell lymphomas, and a 22% ORR in R/R MM (NCT04756726) [8]. KT-333, a PROTAC that targets STAT3 with a VHL Dependent mechanism, is in phase 1a/1b trials for a broad range of conditions including R/R B- and T-cell lymphomas, classical Hodgkin lymphoma (cHL), solid tumors (ST), and large granular lymphocytic-leukemia/T-cell prolymphocytic leukemia (LGL-L/T-PLL), exhibiting a 31.4% ORR with 51 patients enrolled (NCT05225584) [9]. Preliminary data from these phase 1 trials suggest that these degraders exhibit favorable safety and tolerability profiles, along with promising clinical activity.

These updates from ASH 2024 underscore the dynamic progress in the field of targeted protein degradation, with a focus on innovative approaches to combat hematological diseases and other malignancies. The innovative aspects of these degraders, such as dual targeting, immunomodulatory activity, and combination therapies, highlight the potential for more effective and personalized treatment options in the future.

Table 2 Outcomes of clinical trials of degraders presented at ASH 2024

Compound	Administration Route	Modality	Target(s)	Degradation Mechanism	Disease(s)	Patient Number	ORR	Clinical Stage	NCT Number	Abstract Number
BGB-16673		PROTAC	втк	CRBN Dependent	R/R WM	22	90%	phase 1/2	NCT05006716	
	oral				R/R CLL/SLL	49	78%			860; 885
NX-5948	oral	MG	ВТК	CRBN Dependent	R/R B-cell malignancies	87	76.7% (R/R CLL)	Phase 1a/b	NCT06691828	884
AC676	oral	PROTAC	ВТК	CRBN Dependent	R/R B-cell malignancies	60	-	Phase 1	NCT05780034	4422.1
Cemsidomide	oral	MG	IKZF1/3	CRBN Dependent	NHL	20	25%	phase 1/2	NCT04756726	467;3366
					R/R MM	32	22%			
KT-333	IV	PROTAC	STAT3	VHL Dependent	R/R B- and T-cell lymphomas, cHL, ST and LGL-L/T-PLL	51	31.4%	Phase 1a/1b	NCT05225584	4433

BTK: Bruton's Tyrosine Kinase; IKZF1/3: Ikaros Family Zinc Finger Proteins 1 and 3; IV: Intravenous/Intravenously; STAT3: Signal Transducer and Activator of Transcription 3

Abbreviations

ASH American Society of Hematology R/R Relapsed or Refractory

MG Molecular Glue

PROTAC Proteolysis Targeting Chimeras

CRBN Cereblon

VHL Von Hippel-Lindau

DAC Degrader-Antibody Conjugate

MM Multiple Myeloma

CIIChronic Lymphocytic Leukemia Acute Lymphoblastic Leukemia ALL NHL Non-Hodgkin Lymphoma BTK Bruton's Tyrosine Kinase Classical Hodgkin Lymphoma cHL ORR Overall Response Rate SLL Small Lymphocytic Lymphoma Waldenström Macroglobulinemia WM

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13045-025-01674-6.

Supplementary Material 1

Acknowledgements

Not applicable.

Author contributions

LN drafted this manuscript. SJP prepared tables. SJP and ZHH provided direction and guidance throughout the preparation of the manuscript. All authors read and approved the final manuscript.

Funding

No fundings.

Data availability

No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 26 December 2024 / Accepted: 13 February 2025 Published online: 05 March 2025

References

- Dong X, et al. Potent in Vitro and in vivo efficacy of Hdz-C123A, a GSPT1 degrader-antibody Conjugate Targeting CD123 in Acute myeloid leukemia. Blood. 2024;144:156. https://doi.org/10.1182/blood-2024-201221.
- Rauch S, et al. Sky-1214, a small Molecule Splicing Modulator Targeting FANCL and Fanci, provides a new mechanism of Action Targeting multiple myeloma and Non-hodgkin's lymphoma. Blood. 2024;144:2784. https://doi.or g/10.1182/blood-2024-209068.
- Seymour JF, et al. Preliminary efficacy and safety of the Bruton tyrosine kinase degrader BGB-16673 in patients with relapsed or refractory Waldenström Macroglobulinemia: results from the phase 1 CaDAnCe-101 study. Blood. 2024;144:860. https://doi.org/10.1182/blood-2024-199212.
- Thompson MC, et al. Preliminary efficacy and safety of the Bruton tyrosine kinase degrader BGB-16673 in patients with relapsed or refractory chronic lymphocytic Leukemia/Small lymphocytic lymphoma: results from the phase 1 CaDAnCe-101 study. Blood. 2024;144:885–885. https://doi.org/10.1182/blo od-2024-199116.
- Shah NN, et al. Efficacy and safety of the Bruton's tyrosine kinase (BTK) degrader NX-5948 in patients with Relapsed/Refractory (R/R) chronic lymphocytic leukemia (CLL): updated results from an ongoing phase 1a/b study. Blood. 2024;144:884. https://doi.org/10.1182/blood-2024-194839.
- Tees MT, et al. A phase 1 study of AC676, a novel BTK chimeric degrader, in patients with B-Cell malignancies. Blood. 2024;144:44224421. https://doi.org/ 10.1182/blood-2024-194009.
- Horwitz S, et al. Initial results of a phase 1 first-in-human study of Cemsidomide (CFT7455), a Novel MonoDACTM Degrader, in patients with

- Non-hodgkin's lymphoma. Blood. 2024;144:467–467. https://doi.org/10.1182/blood-2024-210482.
- Dhakal B, et al. Initial results of a phase 1 first-in-human study of Cemsidomide (CFT7455), a Novel MonoDACTM Degrader, with dexamethasone in patients with Relapsed/Refractory multiple myeloma. Blood. 2024;144:3366– 3366. https://doi.org/10.1182/blood-2024-204255.
- Feldman T, et al. Pharmacokinetics, Pharmacodynamics and Clinical Activity of KT-333, a targeted protein degrader of STAT3, in patients with relapsed or

refractory lymphomas, leukemia, and solid tumors. Blood. 2024;144:4433. htt ps://doi.org/10.1182/blood-2024-210301. Safety.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.