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Background
Lymphoma, a malignant neoplasm that originates from 
lymphocytes and lymphoid tissues, has experienced a 
significant increase in incidence over recent years [1]. 
The complexity of its pathological types necessitates a 
comprehensive classification system. The latest World 
Health Organization (WHO) classification, authored by 
a diverse group of experts in hematopathology, hematol-
ogy, oncology, genetics, and molecular biology, catego-
rizes lymphomas based on cell lineage, such as B-, T-, or 
natural killer (NK) cells, and further stratifies subtypes 
within each lineage according to morphology, immuno-
phenotype, genetic features, and clinical presentation [2]. 
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Abstract
Lymphoma, a malignant tumor derived from lymphocytes and lymphoid tissues, presents with complex and 
heterogeneous clinical manifestations, requiring accurate patient classification for appropriate treatment. While 
invasive pathological examination of lymph nodes or lymphoid tissue remains the gold standard for lymphoma 
diagnosis, its utility is limited in cases of deep-seated tumors such as intraperitoneal and central nervous system 
lymphomas. In addition, biopsy procedures carry an inherent risk of complications. Computed tomography 
(CT) and positron emission tomography/computed tomography (PET/CT) imaging are essential for treatment 
assessment and monitoring, but lack the ability to detect early clonal evolution and minimal residual disease 
(MRD). Liquid biopsy-based analysis of circulating tumor DNA (ctDNA) offers a non-invasive alternative that 
allows for repeated sampling and overcomes the limitations of spatial heterogeneity and invasive biopsies. 
ctDNA provides genetic and epigenetic insights into lymphoma and serves as a dynamic, quantifiable biomarker 
for diagnosis, risk stratification, and treatment response. This review comprehensively summarizes common 
genetic variations in lymphoma and systematically evaluates ctDNA detection technologies, including PCR-based 
assays and next-generation sequencing (NGS). Applications of ctDNA detection in noninvasive genotyping, 
risk stratification, therapeutic response monitoring, and MRD detection are discussed across various lymphoma 
subtypes, including diffuse large B-cell lymphoma, Hodgkin lymphoma, follicular lymphoma, and T-cell lymphoma. 
By integrating recent research findings, the review highlights the role of ctDNA profiling in advancing precision 
medicine, enabling personalized therapeutic strategies, and improving clinical outcomes in lymphoma.
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The clinical manifestations of different lymphoma sub-
types exhibit marked heterogeneity, resulting in different 
treatments [3–5].

Recent advances in biomedical technologies, such as 
next-generation sequencing (NGS) and high-through-
put drug screening, have enhanced our understanding 
of lymphoma and facilitated the development of tar-
geted therapies and immunotherapy, thereby improving 
treatment outcomes and survival rates [5–7]. Although 
aggressive B-cell lymphomas are often curable with com-
bination chemotherapy and immunotherapy, indolent 
lymphomas typically achieve durable remissions but 
require lifelong monitoring due to their incurable nature. 
Among aggressive subtypes, diffuse large B-cell lym-
phoma (DLBCL) poses a significant challenge, as resis-
tance or relapse after first-line therapy is common for a 
subset of patients [8]. Therefore, accurately identifying 
patients at risk of refractory disease or relapse, along with 
early prognostic predictions at diagnosis, has become 
increasingly important. Such prognostic assessments are 
crucial for guiding personalized treatment strategies [5, 
9, 10].

Circulating cell-free DNA (cfDNA) refers to small frag-
ments of DNA, typically ∼ 70–200 base pairs in length, 
that are released into the bloodstream or other body 
fluids as a result of cellular apoptosis (programmed cell 
death) or necrosis (cell death due to injury or disease) 
[11–14]. Originating from various organs and tissues, 
cfDNA can be detected in blood, urine, saliva, and addi-
tional body fluids [15]. Notably, as a dynamic biomarker, 
its concentration fluctuates under different physiological 
and pathological conditions, such as pregnancy, organ 
transplantation, and cancer. In recent years, cfDNA has 
garnered attention in clinical and research settings due to 
its non-invasive nature and utility as a biomarker for con-
ditions such as cancer, prenatal testing, organ transplant 
monitoring, and infectious diseases [16–20]. Analysis of 
cfDNA can reveal genetic and epigenetic changes, offer-
ing insights into underlying physiological or pathological 
processes [21–23].

Circulating tumor DNA (ctDNA), a subset of cfDNA 
that originates from tumor cells, carries distinct genetic 
and epigenetic signatures specific to cancer (Fig.  1). 
ctDNA constitutes a variable fraction of cfDNA and 
has been extensively studied across a range of cancers, 
including lung, breast, colorectal, kidney, and hemato-
logical malignancies [23]. As ctDNA reflects the molec-
ular characteristics of the tumor, it is increasingly being 
used for cancer prognosis, diagnosis, and monitoring of 
therapeutic responses. Recent research highlights the 
potential of ctDNA in lymphoma for risk stratification, 
therapeutic response assessment, and disease progres-
sion monitoring [24–27].

In this review, we provide a comprehensive overview 
of common genetic alterations in lymphoma and evalu-
ate the current ctDNA detection technologies. We also 
examine recent advancements in the application of 
ctDNA in malignant lymphoma, emphasizing its pivotal 
role in advancing personalized medicine through non-
invasive approaches.

Molecular genetics of lymphoma
Lymphomas are broadly classified into two main types: 
non-Hodgkin lymphoma (NHL), accounting for about 
85–90% of cases, and Hodgkin lymphoma (HL), compris-
ing the remaining 10–15% [3]. NHL itself represents a 
diverse group of malignancies with distinct genetic pro-
files [28, 29]. Approximately 85–90% of NHL cases origi-
nate from B cells, including DLBCL, follicular lymphoma 
(FL), marginal zone lymphoma (MZL), and mantle cell 
lymphoma (MCL), while the remainder derive from T 
cells or natural killer (NK) cells. Recent advances in NGS 
have provided comprehensive insights into the genomic 
landscape of these lymphoma subtypes, as illustrated in 
Fig. 2.

Diffuse large B-cell lymphoma
DLBCL, accounting for 30–40% of B-cell NHL, exhib-
its significant genetic heterogeneity that complicates 
a complete definition of its landscape (Fig.  2) [30, 31]. 
Integrative analyses of large biopsy cohorts have clari-
fied its genetic variation, while ctDNA analysis detects 
alterations missed in tissue biopsies [32–34]. The patho-
genic alterations affect key processes: B-cell differen-
tiation (BCL-6 translocations disrupt germinal center 
responses and PRDM1 alterations enhance NF-κB activa-
tion and impair plasma cell differentiation); B-cell recep-
tor signaling (mutations in CD79B and CARD11, BCL10 
amplifications, the MYD88L265P mutation in Toll-like 
receptor signaling, TNFAIP3 mutations, increased REL 
expression, PTEN deletions, and PIK3CA amplifications 
or activating mutations in the PI3K–AKT–mTOR path-
way); apoptosis (alterations in BCL2 and FAS); epigenetic 
regulation (mutations in KMT2D, CREBBP, EZH2, and 
EP300); and immune evasion (PD-L1 overexpression) 
[30, 35].

Molecular subtypes based on these features enable risk 
stratification through RNA-based cell-of-origin classifi-
cations (germinal center B-cell-like and activated B-cell-
like) and genomic aberration-based systems defining five 
clusters (C1- C5) and seven subtypes (EZB MYC+, EZB 
MYC-, ST2, BN2, A53, N1, and MCD) (Fig.  2) [36–40], 
with plasma ctDNA genotyping further complement-
ing RNA-based classification [41, 42]. Collectively, these 
genetic insights underscore the complexity of DLBCL 
and suggest avenues for targeted therapies and prognos-
tic markers.
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Mantle cell lymphoma and Burkitt lymphoma(BL)
MCL and BL have distinctive genetic hallmarks (Fig. 2). 
MCL is defined by the t(11;14)(p13;q32) transloca-
tion leading to CCND1 overexpression and recurrent 
variations in DNA damage repair (ATM, TP53), epi-
genetic regulation (NSD2, KMT2D, MEF2B, KMT2C, 
SMARCA4), and cellular homeostasis and growth 
(CCND1, CDKN2A, BIRC3, CARD11, TRAF2, RB1, 
POT1, NOTCH1/2) [43–46]. BL is characterized by the 
t(8;14) translocation that activates MYC, along with 

mutations in TCF3, ID3, CCND3, TP53, and CDKN2A 
[47–51]. Both MCL and BL can be divided into outcome-
related subtypes based on comprehensive genomic and 
transcriptomic profiles [50, 52].

Follicular lymphoma and marginal zone lymphoma
FL and MZL are common indolent B-NHLs, with approx-
imately 15% of cases transforming to aggressive B-cell 
lymphomas. FL is characterized by the t(14;18)(q32;q21) 
translocation, which is necessary but not sufficient for 

Fig. 1 Genetic features of ctDNA in lymphoma. Quantitative and qualitative analysis of ctDNA provide insights into cellular turnover, genetic and epigen-
etic alterations, immunoglobulin gene rearrangements, and fragmentomics, revealing underlying physiological and pathological processes in lymphoma
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its development [53, 54], and frequently shows altera-
tions in epigenetic regulators such as CREBBP, KMT2D, 
EZH2, and EP300 [55, 56]. MZL comprises three sub-
types: extranodal, splenic, and nodal. Extranodal MZL 
is frequently associated with the t(11;18)(q21;q21) trans-
location that produces the API2-MALT1 fusion and is 
less often linked to the t(14;18)(q32;q21) translocation 
(IGH-MALT1) or the t(1;14)(p22;q32) translocation 
(BCL10-IGH) [57, 58]. Both splenic and nodal MZL share 
genomic alterations including mutations in KMT2D, 
NOTCH2, PTPRD, TNFAIP3, and KLF2 [59]. Predictive 
models based on these genetic features have been devel-
oped to assess the risk of histological transformation of 
FL and MZL to aggressive lymphoma [60–62].

Central nervous system lymphoma (CNSL)
CNSL is a rare, aggressive NHL subtype comprising pri-
mary CNS lymphoma (PCNSL) and secondary CNS 
lymphoma (SCNSL), the latter indicating lymphoma 
metastasized to the CNS from systemic disease. PCNSL, 

confined to the CNS at diagnosis, is marked by recurrent 
somatic mutations in key genes (PIM1, MYD88, CD79B, 
KMT2D, and BTG2) that affect critical signaling path-
ways (JAK-STAT, NF-κB, and B-cell receptor) and drive 
lymphomagenesis and progression [63, 64]. Additional 
alterations include recurrent amplifications and dele-
tions at 18q21.23 and 6p21, along with a notable loss of 
MHC class I expression that may aid immune evasion. 
An integrative analysis of 240 PCNSL cases identified 
four distinct molecular clusters (C1, C2, C3, and C4) 
(Fig. 2), each with unique genetic and epigenetic profiles 
and prognostic outcomes [65]. These classifications offer 
valuable insights into PCNSL heterogeneity and have sig-
nificant implications for personalized therapeutic strate-
gies and prognostication.

Peripheral T-cell lymphoma (PTCL)
PTCL refers to an uncommon and diverse collection of 
aggressive NHL originating from mature T cells and 
NK cells [66]. Its major subtypes include PTCL-NOS, 

Fig. 2 Overview of lymphoma types, subtypes, genetic changes, and impacted signaling pathways in this review. Orange: lymphoma subtypes; light 
blue: the cell-of-origin classification of DLBCL; green: genetic subtypes of lymphoma; dark gray: genetic hallmarks of lymphoma; light gray: deregulated 
biological pathways. Abbreviations: DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma; PCNSL, primary central nervous system lym-
phoma; BL, Burkitt lymphoma; PTCL, peripheral T-cell lymphoma; FL, follicular lymphoma; cHL, classical Hodgkin lymphoma. N/A, not available
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angioimmunoblastic T-cell lymphoma (AITL), ALK-
positive/negative anaplastic large cell lymphoma (ALCL), 
and extranodal NK/T-cell lymphoma (ENKTL) (Fig.  2). 
PTCL-NOS often harbors mutations in histone-modify-
ing genes (EZH2, KDM6A, and KMT2) [67], while AITL 
is marked by recurrent inactivating RHOAG17V muta-
tions and alterations in epigenetic regulators (TET2, 
DNMT3A, and IDH2), alongside activation of TCR and 
PI3K-AKT pathways [68, 69]. ENKTL exhibits mutations 
in RNA helicase genes (e.g., DDX3X), aberrations in the 
JAK-STAT and RAS-MAPK pathways, and alterations 
in epigenetic modulators (KMT2C, KMT2D) [70]. ALK-
positive ALCL is defined by the NPM-ALK fusion that 
activates STAT3, whereas ALK-negative ALCL involves 
NFKB2-ROS2 and NFKB2-TYK2 fusions driving STAT3 
activation [71]. Comprehensive genomic profiling has 
delineated four distinct molecular and microenviron-
mental PTCL subtypes with unique features [72].

Hodgkin lymphoma (HL)
Over 90% of HL cases are classified as classical HL (cHL), 
while nodular lymphocyte-predominant HL (NLPHL) 
accounts for about 5–10%. Tissue-based genomic profil-
ing of cHL is limited by the low abundance of Hodgkin 
and Reed-Sternberg (HRS) cells, which represent only 
0.1–10% of tumor cellularity [73, 74]. In contrast, nonin-
vasive cfDNA profiling has demonstrated superior per-
formance [34, 75–77]. cfDNA and flow-sorted HRS cell 
sequencing have revealed recurrent mutations in SOCS1, 
TNFAIP3, B2M, STAT6, CSF2RB, GNA13, PTPN1, 
ARID1A, ZNF217, IL4R, NFKBIA, ACTB, PCBP1, CISH, 
NFKB2, and linker histone H1-5, along with recur-
rent copy number variants (CNVs), including 2p15 
(REL), 9p24.1-9p24.2 (PDL1), 5p15.33 (TERT), 17q21.31 
(MAP3K14), 6q27 (TNFAIP3), 17p13.1 (TP53), 9p21.3 
(CDKN2A/B), 11q22.3 (BIRC3) and 6p21-22 (H1-5, HLA-
A and HLA-C) [75–82]. Targeted ctDNA sequencing of 
366 patients has defined two cHL subtypes: cluster H1 
(68% of cases), characterized by mutations in the NF-κB, 
JAK/STAT, and PI3K-AKT pathways, and cluster H2 
(32%), which exhibits broader structural abnormalities 
and harbors mutations in TP53 and KMT2D [34].

NLPHL displays a distinct genetic profile. It is defined 
by the presence of lymphocyte-predominant cells and 
lacks many of the mutations common in cHL [2, 73] In 
NLPHL, targeted sequencing reveals mutations in SGK1, 
DUSP2, and JUNB, as well as frequent BCL6 transloca-
tions - a finding that is rare in cHL. Moreover, mutations 
in STAT6, JAK2, TNFAIP3, and NFKBIA, which are prev-
alent in cHL, are uncommon in NLPHL [83, 84].

Methods for ctDNA detection and analysis
The clinical application of conventional genomic profil-
ing in lymphoma management faces challenges due to 
spatial heterogeneity and the limited tumor material 
typically obtained from fine-needle aspirations and core 
needle biopsies. ctDNA profiling presents a noninvasive 
approach to capture comprehensive molecular charac-
teristics without these sampling limitations, showing 
potential for genotyping, response assessment, and MRD 
monitoring in lymphomas.

Liquid biopsy technologies, particularly through anal-
ysis of ctDNA in body fluids like peripheral blood, have 
emerged as valuable tools for lymphoma detection and 
monitoring. Optimal ctDNA collection and process-
ing depend on key preanalytical factors, including blood 
volume, timing of plasma isolation, and use of cell-stabi-
lizing tubes to prevent cellular DNA contamination [25, 
85–88]. Among ctDNA profiling technologies, PCR-
based methods and NGS-based approaches are most 
common and have been extensively studied in recent 
years (Table 1; Fig. 3).

PCR-based methods
PCR assays, including BEAMing (beads, emulsion, 
amplification, and magnetics) [89], allele-specific oligo-
nucleotide PCR (ASO-PCR) [90] and digital droplet PCR 
(ddPCR) [91], are cost-effective and provide rapid turn-
around times, making them well-suited for ctDNA-based 
assays in lymphomas (Fig.  3). BEAMing leverages mag-
netic bead-based PCR amplification within microemul-
sions and flow cytometry, employing streptavidin-coated 
beads and biotinylated oligonucleotides for the highly 
sensitive detection and quantification of nucleotide 
variations through fluorescent labeling and analysis of 
PCR products (Fig. 3a) [89]. With a sensitivity as low as 
0.01%, this technique reliably detects genetic alterations 
in ctDNA and shows strong concordance with alterations 
identified in patient tissue samples (Table 1) [92].

ASO-PCR, or amplification refractory mutation system 
(ARMS), utilizes uniquely designed primers to amplify 
DNA when there is a perfect match at single-nucleotide 
variant (SNV) or wild-type sequences, enabling precise 
SNV detection through specific PCR product patterns 
(Fig. 3b) [90]. For example, Jimenez et al. used ASO-PCR 
to reliably detect the MYD88L265P mutation in lymphop-
roliferative disorders, highlighting its utility as a sensitive, 
cost-effective diagnostic tool [87].

ddPCR is considered the gold standard for quantify-
ing DNA mutations due to its ability to partition DNA 
molecules into thousands of droplets for individual PCR 
amplification, enabling high sensitivity and absolute 
quantification without needing standard curves (Fig. 3c) 
[93]. The method is effective in identifying genetic 
alternations in lymphomas, such as detecting t(14;18) 
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translocation in FL [54], t(11;14) translocation in MCL 
[94], and MYD88L265P in PCNSL [95].

Despite their advantages, PCR-based methods are typi-
cally limited to detecting a single or few known muta-
tions, with a sensitivity threshold of approximately 0.01% 
allele frequency (AF) (Table 1) [96].

NGS-based methods
NGS-based technologies allow massive parallel sequenc-
ing of DNA molecules, enabling comprehensive assess-
ment of mutational landscapes, including SNVs, 
insertions and deletions and CNVs [97–100]. Targeted 
amplicon-based and hybrid-capture NGS approaches 
offer advantages over single-gene assays by identifying 
a broad range of genetic alterations in lymphoma with-
out the need for patient-specific optimization [101]. For 
example, Dubois et al. developed Lymphopanel-a 34-gene 
panel applied to samples from 215 patients-that revealed 
the molecular heterogeneity among DLBCL subtypes and 
identified mutations with potential therapeutic and prog-
nostic significance [102].

Immunoglobulin high-throughput sequencing (IgHTS), 
marketed as clonoSEQ by Adaptive Biotechnology, is 
FDA approved for the detection of MRD in chronic lym-
phocytic leukemia (CLL), multiple myeloma (MM), and 
B-cell acute lymphoblastic leukemia (B-ALL) [85]. This 
technique uses universal primers for PCR amplifica-
tion of immunoglobulin genomic regions, followed by 
sequencing to identify the amplified IgV(D)J clonotypes 
(Fig. 3d) [103]. IgHTS achieves a sensitivity of ∼ 0.005%, 
although its effectiveness may be limited by somatic 
hypermutation and the amount of cfDNA analyzed 
(Table 1) [104]. Because it doesn’t require patient-specific 

primers, it is widely applicable, although there are some 
limitations for highly mutated lymphoma subtypes [105].

Cancer personalized profiling by deep sequencing 
(CAPP-seq) [99], initially developed for non-small cell 
lung cancer with approximately 125  kb coverage, com-
bines unique barcoding strategies with bioinformat-
ics algorithms to improve sensitivity and enable ctDNA 
detection down to allele frequencies of ∼ 0.002% (Fig. 3e; 
Table 1) [106]. This ultra-sensitive assay is used in diverse 
oncology research areas, including early detection, non-
invasive genotyping, resistance mutation identification, 
and disease burden quantification [41, 43, 107].

Phased variant enrichment and detection sequenc-
ing (PhasED-Seq) is a hybrid capture method that uses 
phased variants, detects mutations within 150 base pairs 
on the same DNA strand for higher ctDNA sensitivity 
(Fig.  3f ) [97]. Phased mutations are commonly found 
in specific genomic regions of B-cell lymphoma due to 
both normal and abnormal somatic hypermutation. Ana-
lytical sensitivity, tested by diluting lymphoma ctDNA 
in healthy cfDNA, achieved a detection threshold of 
0.00005% (Table 1) [108].

Other techniques, including pyrosequencing [109], 
whole exome sequencing (WES) [110] and whole genome 
sequencing (WGS) [82], have been widely used for 
ctDNA analysis in lymphoma patients (Fig.  3g). Addi-
tionally, methods assessing epigenetic modifications as 
biomarkers for lymphoma diagnosis and monitoring are 
being explored (Fig.  3h) [111]. Using pyrosequencing, 
Kristensen and colleagues demonstrated the feasibil-
ity of detecting aberrant promoter DNA methylation in 
cfDNA from the plasma of DLBCL patients. They iden-
tified aberrant DAPK1 methylation as an independent 

Table 1 Comparison of ctDNA detection technologies for lymphoma analysis
Methods Sensitivity Advantages Limitations

PCR-based BEAMing [186] ∼ 0.01% High concordance with tissue-based assays Detection of known mutations only
ASO-PCR [90] ∼ 1% Simple workflow and clear results Detection of known mutations only
ddPCR [96] ∼ 0.01% Simple workflow and clear results Detection of known mutations only

NGS-based WGS/WES [98] ∼ 1% Broad variant coverage
Oncogene and suppressor gene detection

Costly and time consuming
Low sensitivity
Difficult data interpretation

CAPP-seq [99] ∼ 0.002% Simultaneous mutation identification
Capture patient-specific variations
Detect SNVs, insertions, rearrangements, 
CNVs

Complex, multi-step workflow
Requires bioinformatics support
Difficult data interpretation
Unable to detect gene fusions

PhasED-seq [97] ∼ 0.00005% High sensitivity
Detects any type of somatic change,
including fusions

Complex workflow
Requires bioinformatics support
Difficult data interpretation

IgHTS [100, 187] ∼ 0.005% Simple workflow and high accuracy Identification of a single marker; 
Need to identify tissue specific 
dominant clonality

TBS [23] - High accuracy Target regions need to be defined
Abbreviations: PCR, polymerase chain reaction; BEAMing, beads, emulsion, amplification and magnetics; ASO-PCR, allele specific oligonucleotide polymerase 
chain reaction; CNVs, copy number variants; ddPCR, droplet digital polymerase chain reaction; NGS, next generation sequencing; IgHTS, immunoglobulin high-
throughput sequencing; VDJ, variable, diversity, joining; WGS, whole genome sequencing; WES, whole exome sequencing; CAPP-seq, cancer personalized profiling 
by deep sequencing; SNVs, single nucleotide variants; PhasED-seq, phased variant enrichment and detection sequencing; TBS, Targeted bisulfite sequencing
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Fig. 3 (See legend on next page.)
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prognostic marker associated with treatment response 
and patient survival [112]. Furthermore, targeted bisulfite 
sequencing (TBS) of over 100,000 genomic regions using 
ctDNA has enabled the detection of more than 50 cancer 
types, including lymphoma, across all stages, achieving 
an average sensitivity of 54.9% at a specificity exceeding 
99% and a single false positive rate below 1% [23].

Although numerous techniques have been reported, 
significant challenges remain in the analysis of ctDNA in 
lymphoma, including the detection of low absolute and 
fractional amounts (often less than 0.5%) of ctDNA, as 
well as the diversity of mutations present in lymphoma 
(Table 1) [85, 86, 105].

Application of ctDNA detection in lymphoma
Studies on the application of ctDNA in lymphoma have 
predominantly focused on DLBCL, with several investi-
gations extending to other lymphoma subtypes (Tables 2 
and 3). This section summarizes the clinical applica-
tions of ctDNA for noninvasive genotyping, treatment 
response monitoring, and MRD assessment across vari-
ous lymphoma subtypes (Fig. 4).

Clinical significance of ctDNA testing in diffuse 
large B-cell lymphoma
ctDNA as a non-invasive genotyping biomarker
Genetic profiling of lymphoma tissue obtained via biopsy 
or surgery is essential for diagnosis and subtype classi-
fication. However, such tissue analysis can be challeng-
ing due to spatial heterogeneity and limited material 
from fine needle aspirations or core needle biopsies. To 
overcome these limitations, ctDNA has been investi-
gated as a noninvasive biomarker for capturing the com-
plete molecular landscape of DLBCL (Table  2). Studies 
have demonstrated a concordance rate greater than 70% 
between ctDNA and tissue-based genotyping in DLBCL 
[32, 113–115]. This high concordance highlights the 
potential for ctDNA genotyping in individualized ther-
apy selection for DLBCL. For instance, patients with the 
ABC-DLBCL subtype harboring B-cell receptor muta-
tions, particularly those with MYD88 mutations, have 
shown high response rates to ibrutinib (80%) [116]. Fur-
thermore, ctDNA-based cell of origin (COO) classifica-
tion tools have shown strong concordance with tumor 
biopsies and have been used effectively for individualized 
risk stratification [41, 42]. Additionally, ctDNA analysis 
often detects novel mutations not found in tissue biop-
sies, which could be due to tumor spatial heterogeneity, 

clonal evolution in recurrence, or selective pressures 
from targeted therapy [32, 41, 113, 117–119]. These find-
ings underscore that ctDNA genotyping is a clinically 
feasible, noninvasive tool for DLBCL patients.

ctDNA quantification in evaluating tumor burden and 
treatment efficacy
Beyond genotyping, pretreatment ctDNA levels can 
provide a reliable assessment of disease burden and pre-
dict outcomes in DLBCL. Baseline ctDNA levels cor-
relate with total metabolic tumor volume (TMTV), 
international prognostic index (IPI), lactate dehydroge-
nase (LDH) levels, and Ann Arbor stage, with high pre-
dictive value for clinical outcomes in patients receiving 
standard immunochemotherapy [41, 107, 113, 120–123]. 
A study by Alig et al. demonstrated that pretreatment 
ctDNA levels also predicted a short diagnosis-to-treat-
ment interval and served as an independent prognos-
tic marker for event-free survival (EFS) in 267 DLBCL 
patients [124].

Traditional risk stratification tools like IPI and TMTV 
are often used only once before treatment and have not 
achieved the desired precision for personalized treat-
ment [125–129]. Inspired by molecular response mod-
els in chronic myelogenous leukemia and CLL, recent 
studies have investigated the prognostic utility of ctDNA 
molecular responses in DLBCL treated with anthra-
cycline-based regimens [130, 131]. In an early study, 
DLBCL patients with undetectable interim ctDNA by 
lgHTS after two cycles of dose-adjusted EPOCH-R 
treatment demonstrated favorable 5-year progression-
free survival (PFS) [120]. Based on these findings, Kurtz 
and colleagues proposed thresholds for early molecu-
lar response (EMR) using CAPP-seq after a single cycle 
of front-line R-CHOP (rituximab, cyclophosphamide, 
doxorubicin, vincristine, and prednisolone) therapy. In 
their framework, a 2-log ctDNA reduction defined EMR, 
and a 2.5-log reduction after two cycles was classified as 
major molecular response (MMR). Both EMR and MMR 
were significantly correlated with improved EFS at 24 
months for patients receiving either front-line or salvage 
therapy, with multivariate analyses indicating that EMR 
and MMR independently predicted EFS and overall sur-
vival (OS) [107]. It is also demonstrated that the molecu-
lar response (EMR or MMR, hazard ratios for EMR and 
MMR were 6.5–10 and 11–26) showed more strongly 
prognostic of outcomes than pretreatment ctDNA (haz-
ard ratio of 2.4–2.6). Additionally, ctDNA clearance after 

(See figure on previous page.)
Fig. 3 Summary of key ctDNA detection technologies in lymphoma. Abbreviations: PCR, polymerase chain reaction; BEAMing, beads, emulsion, ampli-
fication and magnetics; ASO-PCR, allele specific oligonucleotide polymerase chain reaction; CNVs, copy number variants; ddPCR, droplet digital poly-
merase chain reaction; NGS, next generation sequencing; IgHTS, immunoglobulin high-throughput sequencing; VDJ, variable, diversity, joining; WGS, 
whole genome sequencing; WES, whole exome sequencing; CAPP-seq, cancer personalized profiling by deep sequencing; SNVs, single nucleotide vari-
ants; PhasED-seq, phased variant enrichment and detection sequencing; TBS, Targeted bisulfite sequencing
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four treatment cycles has been identified as an indepen-
dent prognostic biomarker in multivariate analyses [132]. 
To address limitations associated with fixed-point ctDNA 
assessments, the Kurtz group developed the continuous 
individualized risk index (CIRI), a dynamic model incor-
porating IPI, pretreatment ctDNA, COO, EMR, MMR, 
and interim PET/CT to provide individualized risk pro-
files. The CIRI model outperformed traditional methods 
in predicting outcomes [133]. Furthermore, combining 
MMR with interim PET/CT improved PFS stratification, 
yielding 2-year PFS rates of 84%, 17%, and 0% across dif-
ferent risk groups (p < 0.001) [134].

ctDNA for risk stratification and treatment response in 
relapsed/refractory (R/R) diffuse large B cell lymphoma
The clinical utility of ctDNA levels in R/R DLBCL has 
shown promise across various therapies, notably chi-
meric antigen receptor (CAR) T-cell therapy, where risk 
stratification and response assessment remain challeng-
ing. In a study of 72 R/R DLBCL patients treated with 

axicabtagene ciloleucel, undetectable ctDNA one-week 
post-infusion was observed in 70% of patients with dura-
ble responses compared to only 13% of those with dis-
ease progression (p < 0.0001), while detectable ctDNA 
at day 28 predicted poorer PFS and OS [121]. An addi-
tional study using CAPP-seq in two independent CAR 
T-cell cohorts revealed that higher ctDNA levels at weeks 
1 and 4 were significantly associated with progression 
(p < 0.05), with pretreatment ctDNA (p = 0.003) and mini-
mal molecular residual at week 4 (p = 0.028) predicting 
EFS [117].

Baseline ctDNA levels have also been evaluated by 
CAPP-seq in R/R DLBCL patients receiving polatuzumab 
vedotin in combination with bendamustine and ritux-
imab (BR) or BR alone, with results showing a correlation 
between baseline ctDNA and both PFS and OS. ctDNA 
levels decreased significantly in patients who achieved 
complete response (CR) compared to non-CR patients 
[135]. In 40 patients with R/R DLBCL (27 de novo and 
13 transformed) treated with panobinostat, with or 

Table 2 Clinical application of ctDNA detection in diffuse large B cell lymphoma
Reference Origin of ctDNA Technologies Patient counts (Lymphoma 

subtypes)
Clinical 
applications

Daigle et al. [114] Plasma 62-gene panel NGS 185 (DLBCL, FL) Treatment response
Rivas-Delgado et al. [113] Plasma 112-gene panel NGS 100 (DLBCL) Treatment response;

Prognosis
Rossi et al. [32] Plasma 59-gene panel CAPP-seq 50 (DLBCL) Treatment response;

MRD monitoring
Sworder et al. [117] Plasma Custom 608 kb oligonucleotide panel 

CAPP-seq
138 (R/R LBCL) Treatment response;

Prognosis
Bruscaggin et al. [118] Plasma Custom 608 kb oligonucleotide panel 

CAPP-seq
67 (DLBCL, FL, RS) Treatment response;

Prognosis
Meriranta et al. [122] Plasma 126-gene panel NGS 101 (DLBCL, PMBCL, FL3b, 

THRLBCL)
Treatment response;
Prognosis

Esfahani et al. [42] Plasma EPIC-seq targeting on 236 TSS regions 114 (DLBCL) Prognosis
Olszewski et al. [170] Cerebrospinal fluid IgHTS 37 (Aggressive lymphoma) Diagnostic
Alig et al. 2021 [124]. Plasma Custom 608 kb oligonucleotide panel 

CAPP-seq
267 (DLBCL, TRHRLBCL) Prognosis

Roschewski et al. [120] Plasma NGS targeting on
IgH and IgK locus

126 (DLBCL) MRD monitoring;
Prognosis

Kurtz et al. [107] Plasma 466-gene panel CAPP-seq 217 (DLBCL, PMBL) Prognosis
Zou et al. [33] Plasma 188-gene panel NGS 23 (DLBCL, HGBL, tFL) Prognosis;

MRD monitoring
Frank et al. [121] Plasma IgHTS 72 (DLBCL, TFL, PMBL) Prognosis
Herrera et al. [135] Plasma 320 kb panel NGS 33 (R/R DLBCL) Prognosis;

MRD monitoring
Kurtz et al. [104] Plasma IgHTS 75 (DLBCL, PTLD) MRD monitoring
Scherer et al. [41] Plasma Custom 608 kb oligonucleotide panel 

CAPP-seq
116 (DLBCL) MRD monitoring;

Prognosis
Kurtz et al. [97] Plasma PhasED-Seq; Custom 608 kb oligo-

nucleotide panel CAPP-seq
213 (B-cell lymphomas) MRD monitoring

Abbreviations: NGS, next-generation sequencing; IgHTS, immunoglobulin high-throughput sequencing; Ig-NGS, immunoglobulin next generation sequencing; 
CAPP-seq, cancer personalized profiling by deep sequencing; PhasED-seq, phased variant enrichment and detection sequencing; EPIC-seq, epigenetic expression 
inference from cell-free DNA sequencing; DLBCL, diffuse large B-cell lymphoma; PMBCL, primary mediastinal B-cell lymphoma; FL3b, grade 3b follicular lymphoma; 
THRLBCL, T-cell/histiocyte-rich large B-cell lymphoma; PMBL, primary mediastinal B-cell lymphoma; RS, Richter’s syndrome; FL, follicular lymphoma; LBCL, large 
B-cell lymphoma; CNS, central nervous system; HGBL: high grade B cell lymphoma; tFL, transformed follicular lymphoma; PTLD, posttransplant lymphoproliferative 
disorders; MRD, molecular residual disease; R/R, relapsed/refractory
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Reference Origin of ctDNA Technologies Patient counts (Lympho-
ma subtypes)

Clinical 
applications

Lakhotia, R et al. [139] Plasma NGS targeting on
IgH genomic regions

53 (MCL) MRD monitoring;
Prognosis

Agarwal et al. [140] Plasma 42-gene panel NGS 24 (R/R MCL) Treatment response
Martínez-Laperche et al. [141] Plasma RT-PCR 154 (FL) Treatment response;

Prognosis
Nagy et al. [142] Plasma ddPCR 123 (FL) Treatment response
Hatipoğlu et al. [145] Plasma 110-gene panel NGS 20 ( FL) Diagnosis;

Prognosis
Zhao et al. [146] Plasma 59-gene panel NGS 28 (FL) Prognosis;

MRD monitoring
Yoon et al. [147] Plasma 61-gene penel NGS 40 (FL) Prognosis;

MRD monitoring
Delfau-Larue et al. [148] Plasma ddPCR 133 (FL) Prognosis;

MRD monitoring
Fernández-Miranda et al.2023 
[150]. 

Plasma 78-gene panel NGS 36 (FL) Treatment response;
MRD monitoring

Jiménez-Ubieto et al. [151] Plasma 56-gene Panel NGS 11 (FL) MRD monitoring
Schroers-Martin et al. [153] Plasma 188-gene panel CAPP-seq 48 (FL) Diagnosis
Tatarczuch et al. [154] Plasma 48-gene panel NGS 18 (MZL) Treatment response
Yoon et al. [155] Plasma 54-gene panel NGS 42 (PCNSL) Diagnostic
He et al. [156] Plasma NGS targeting on

IgH genomic regions
5 (PCNSL) Diagnosis

Bobillo et al. [157] CSF;
plasma

ddPCR 7 (PCNSL) Diagnosis

Mutter et al. [159] CSF;
plasma

214-gene panel CAPP-seq 136 (CNSL) Prognosis;
MRD monitoring

Hiemcke-Jiwa et al. [162] Aqueous humor; 
vitreous fluid

ddPCR 63 (PCNSL) Diagnosis

Wang et al. [160] Aqueous humor; 
vitreous fluid

400-gene panel NGS 15 (PCNSL) Diagnosis

Downs et al. [163] Plasma MSP 26 (PCNSL) Diagnosis
Heger et al. [164] Plasma, CSF Multiple gene panel NGS 67 (PCNSL, SCNSL) Prognosis;

MRD monitoring
Hiemcke-Jiwa et al. [168] CSF, plasma ddPCR 29 (PCNSL) Diagnosis
Liang et al. [169] CSF 475-gene panel NGS 150 (DLBCL, PCNSL) Prognosis;

MRD monitoring;
Treatment response

Hayashida et al. [171] Plasma ASO-PCR 20 (AITL) Diagnosis
Qi et al. [173] Plasma 112-gene panel NGS 24 (ENKTL) Prognosis
Ottolini et al. [174] Plasma 81-gene panel CAPP-seq; 12-gene 

panel NGS; ddPCR
25 (PTCL-NOS,
AITL, ALCL)

Treatment response;
MRD monitoring

Kim et al. [175] Plasma 171-gene panel NGS 45 (ENKTL) Treatment response;
MRD monitoring

Li et al. [176] Plasma 41-gene panel NGS 65 (ENKTL) MRD monitoring
Kim et al. [177] Plasma 66-gene panel NGS 94 (TFHL,

PTCL, ALCL, CTCL)
Prognosis

Miljkovic et al. [178] Plasma TCR sequences 45 (PTCL) Prognosis
Herrera et al. [188] Plasma LgHTS; TCR sequencing 68 (B-NHL, T-NHL,

HL, CLL)
MRD monitoring;
Prognosis

Gao et al. [180] Plasma 475-gene panel NGS 38 (R/R-ENKTL) Prognosis
Jin-Hua et al. [179] Plasma 475-gene panel NGS 64 (PTCL) MRD monitoring;

Prognosis
Tian et al. [181] Plasma WGBS; TBS 480 (ENKTL) Diagnosis
Alig et al. [34] Plasma Custom 608 kb oligonucleotide 

panel CAPP-seq and PhasED-Seq
366 (cHL) MRD monitoring;

Prognosis

Table 3 Clinical application of ctDNA detection in other non-Hodgkin lymphoma and Hodgkin lymphoma
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without rituximab, ctDNA changes at day 15 showed 
71.4% sensitivity and 100% specificity in predicting treat-
ment response, compared to baseline ctDNA levels [136]. 
Dynamic ctDNA monitoring in an Asian cohort of 23 
R/R DLBCL patients indicated that undetectable ctDNA 
at day 28 post-CAR19 T-cell therapy was linked to longer 
PFS (p = 0.004) and OS (p = 0.004). In addition, shorter 
ctDNA fragments (< 170 bp) were associated with poorer 
PFS (P = 0.002) and OS (p = 0.008) [33]. These findings 
suggest that baseline ctDNA levels, early ctDNA dynam-
ics, and fragment size are promising predictors of treat-
ment response and survival outcomes in R/R DLBCL.

ctDNA for minimal residual disease monitoring
Relapse remains a concern in DLBCL, even among 
patients achieving remission following first-line anthra-
cycline-based therapy. Conventional surveillance tech-
niques, including clinical examinations and imaging, 
often lack the sensitivity and specificity to detect early 
relapse [137, 138]. ctDNA monitoring offers a nonin-
vasive and radiation-free alternative, allowing for per-
sonalized MRD detection through tumor-informed or 
disease-specific assays. Multiple studies have highlighted 
the utility of ctDNA over imaging for MRD monitor-
ing in DLBCL. Two independent studies demonstrate 

Fig. 4 Clinical applications of ctDNA testing in lymphoma. ctDNA profiling provides a noninvasive liquid biopsy method to capture comprehensive 
molecular characteristics, overcoming the limitations of traditional tissue sampling. Applications include diagnosis, genotyping, outcome prediction, 
response assessment, and MRD monitoring in lymphoma

 

Reference Origin of ctDNA Technologies Patient counts (Lympho-
ma subtypes)

Clinical 
applications

Spina et al. [76] Plasma Custom 608 kb oligonucleotide 
panel CAPP-seq

80 (cHL) MRD monitoring;
Treatment response

Desch et al. [77] Plasma 106-gene and 121-gene panel NGS 96 (PHL) MRD monitoring;
Treatment response

Camus et al. [81] Plasma 9-gene panel NGS 60 (cHL) MRD monitoring
Camus et al. [182] Plasma ddPCR 94 (cHL) Prognosis
Abbreviations: CSF, cerebrospinal fluid; ddPCR, droplet digital polymerase chain reaction; NGS, next generation sequencing; IgHTS, immunoglobulin high-
throughput sequencing; WGBS, whole genome bisulfite sequencing; TBS, targeted bisulfite sequencing; RT-PCR, real time polymerase chain reaction; CAPP-seq, 
cancer personalized profiling by deep sequencing; Ig-NGS, immunoglobulin next generation sequencing; ASO-PCR, allele specific oligonucleotide polymerase 
chain reaction; TCR, T-cell receptor; MSP, Methylation-specific PCR; PHL, pediatric Hodgkin lymphoma; cHL, classical Hodgkin lymphoma; FL, follicular lymphoma; 
MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PCNSL, primary central nervous system lymphoma; CNSL, central nervous system lymphoma; CNS, 
central nervous system; SCNSL, secondary central nervous system Lymphoma; DLBCL, diffuse large B-cell lymphoma; AITL, Angioimmunoblastic T-cell lymphoma; 
ENKTL, Extranodal natural killer/T-cell lymphoma; NOS, not otherwise specified; TFHL, T follicular helper lymphoma; PTCL, peripheral T-cell lymphoma; ALCL, 
anaplastic large cell lymphoma; CTCL, cutaneous T-cell lymphoma; B-NHL: B-cell non-Hodgkin lymphoma, T-NHL: T-cell non-Hodgkin lymphoma; CLL: chronic 
lymphocytic leukemia; HL, Hodgkin lymphoma; MRD, minimal residual disease; R/R, relapsed/refractory

Table 3 (continued) 
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that IgHTS analysis of plasma ctDNA provided superior 
specificity and a high negative predictive value, detecting 
relapse three to 3.5 months before radiographic evidence 
[104, 120]. Scherer and co-workers applied CAPP-seq 
to monitor plasma ctDNA in DLBCL patients with 
CR or recurrence, finding that MRD detection antici-
pated relapse by an average of 6 months, outperforming 
IgHTS and imaging techniques [41]. PhasED-Seq fur-
ther improved sensitivity, detecting MRD in all samples 
that were undetectable by CAPP-seq prior to biopsy-
confirmed recurrence [97]. Moreover, combining ctDNA 
fragment analysis with mutation-based MRD monitor-
ing may enhance detection accuracy in patients who test 
negative with mutation-based assays or show positive 
PET results [122].

Clinical significance of ctDNA testing in other 
lymphoma types
The application of ctDNA has been also investigated 
in other NHL types, including MCL, FL, MZL, CNSL, 
Peripheral T-cell lymphoma and HL as outlined in 
Table 3.

Mantle cell lymphoma
In untreated MCL, higher pretreatment ctDNA levels 
have been associated with several prognostic indica-
tors, including the IPI (P = 0.0004) and TMTV (r = 0.73; 
p = 0.0001). However, no statistically significant survival 
difference was observed between patients with high pre-
treatment ctDNA (above the median) and those with low 
pretreatment ctDNA (below the median) [139]. Nonin-
vasive ctDNA genotyping may also provide insights into 
treatment resistance mechanisms. For instance, in MCL 
patients undergoing ibrutinib-venetoclax therapy, ctDNA 
analysis revealed chromosome 9p21.1–p24.3 loss and 
specific mutations associated with resistance in all five 
study participants. Although these findings are promis-
ing, further research is needed to determine if such geno-
typic data can guide personalized treatments in MCL 
[140].

In a longitudinal study of 53 untreated MCL patients 
with a median follow-up of 12.7 years, patients achiev-
ing undetectable ctDNA after two cycles of induction 
therapy had significantly longer PFS and OS than those 
with detectable ctDNA (median PFS: 2.7 vs. 1.8 years, 
p = 0.005; median OS: 13.8 vs. 7.4 years, p = 0.03). Molec-
ular relapse was detectable before clinical progression in 
seven patients, suggesting that MRD-guided treatment 
strategies could improve outcomes [139]. Nevertheless, 
further investigation is needed to assess MRD-guided 
treatment by comparing preemptive treatment with con-
ventional therapy for MCL.

Follicular lymphoma and marginal zone lymphoma
EZH2 is an important biomarker for guiding frontline 
treatment in FL, with tazemetostat being approved for 
patients harboring EZH2 mutations [141]. In a cohort 
of 123 FL patients, multiplex ddPCR identified an EZH2 
mutation frequency of 41.5% using paired biopsy tissue 
and ctDNA, which is higher than previous estimates of 
20–27% [142–144]. This highlights the potential need for 
routine EZH2 mutation screening in ctDNA sample of 
FL to refine patient selection for targeted therapies.

In addition to genetic mutation screening, liquid biopsy 
analyses have provided further insights into the prognos-
tic landscape of FL. High levels of plasma ctDNA muta-
tions in genes such as BCL2, KMT2D, EP300, STAT6, 
CREBBP, and TP53 have been linked to poor survival 
outcomes in FL [145–147]. The distinct prognostic value 
of ctDNA, CTCs, and TMTV has been clearly demon-
strated. FL patients with elevated TMTV (> 510  cm³, 
p = 0.0004), high CTC counts (> 0.0018 PB cells, p = 0.03), 
or increased cfDNA levels (> 2,550 equivalent genomes/
ml, p = 0.04) showed a lower 4-year PFS. Both cfDNA and 
TMTV remained independently predictive of outcomes 
in multivariate Cox analysis, underscoring their prognos-
tic relevance [148].

Pretreatment ctDNA levels are particularly prognos-
tic in FL, with high levels emerging as the only indepen-
dent factor associated with PFS in multivariate analysis 
(HR 4, 95% CI: 1.1–37, p = 0.039). Patients with elevated 
ctDNA before treatment had a notably poorer prognosis, 
with higher levels observed in those who failed to achieve 
CR or who experienced disease progression within 24 
months (POD24), compared to patients who achieved 
CR or were POD24-negative (p = 0.02 and p < 0.001, 
respectively) [149, 150]. In a longitudinal study of 13 FL 
patients who achieved CR after frontline chemotherapy, 
persistent or re-emergent ctDNA mutations were closely 
linked to disease relapse, emphasizing the utility of 
ctDNA in monitoring for early signs of recurrence [147].

ctDNA levels have also shown promise in assess-
ing treatment responses across different FL therapies. 
Among FL patients treated with anti-CD19 CAR T-cell 
therapy, two of four patients who were PET/CT-pos-
itive post-treatment were found to be MRD-negative 
by ctDNA analysis and experienced no relapse after a 
median follow-up of 34 months [151]. This suggests that 
ctDNA monitoring may complement PET/CT in con-
firming treatment success and assessing MRD status in 
FL.

Transformation from indolent FL to aggressive DLBCL 
often indicates a worsening prognosis [152]. Scherer et 
al. developed a noninvasive ctDNA-based prediction 
model with 83% sensitivity and 89% specificity to iden-
tify FL transformation, allowing for earlier detection. In 
one case, the ctDNA model captured both indolent and 
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aggressive clones prior to clinical transformation, high-
lighting the ability of ctDNA to reflect tumor heterogene-
ity [41]. Similarly, a study by Schroers-Martin et al. using 
CAPP-seq on pre-diagnostic samples found that CREBBP 
mutations in blood could help identify patients at risk of 
developing FL, suggesting a potential role for ctDNA in 
early detection and risk stratification [153].

In MZL, ctDNA profiling through targeted NGS assays 
showed increases in primary ctDNA levels at disease 
progression, with ctDNA mutation burden decreasing 
in patients achieving partial remission, indicating the 
potential for ctDNA to serve as a marker for treatment 
response [154].

Central nervous system lymphoma
Minimally invasive ctDNA analysis of cerebrospinal fluid 
(CSF) or plasma offers significant potential for enhanc-
ing the diagnosis, surveillance, and prognosis of CNSL. 
Studies employing targeted NGS of ctDNA in PCNSL 
patients have demonstrated a 45% sensitivity for detect-
ing mutations found in primary tumor tissue [155]. How-
ever, assessment of IgH gene rearrangements in plasma 
for residual disease tracking has shown limited effective-
ness, with only one tracking clone detected out of four 
patients, highlighting the challenges of ctDNA monitor-
ing in PCNSL [156]. Interestingly, the genetic profiles of 
CSF ctDNA show greater concordance with tissue find-
ings compared to plasma ctDNA, suggesting CSF as a 
more reliable medium for analysis in CNSL [157, 158].

Building upon these findings, ultrasensitive ctDNA 
profiling detected ctDNA in 78% of plasma and all CSF 
samples from CNSL patients before treatment. Patients 
with detectable plasma ctDNA prior to treatment had 
significantly shorter PFS (P < 0.0001) and OS (P = 0.0001), 
with plasma ctDNA-based MRD monitoring effec-
tively identifying high-risk patients (PFS, P = 0.0002; OS, 
P = 0.004) [159]. Additionally, a biopsy-free CNSL iden-
tification model based on ctDNA mutation patterns and 
burden demonstrated sensitivities of 59% in CSF and 
25% in plasma, maintaining 100% specificity and positive 
predictive value. Moreover, for vitreoretinal lymphomas, 
ctDNA sequencing from aqueous humor has shown high 
concordance with vitreous fluid, suggesting that aqueous 
humor ctDNA may be a viable, noninvasive alternative to 
vitreous fluid for diagnosis and monitoring therapeutic 
response [160–162].

In parallel to these genetic analyses, epigenetic bio-
markers in ctDNA, established for various solid tumors, 
are also being evaluated for CNSL. In a pilot study, two 
methylated markers (cg054 and SCG3) showed a sensi-
tivity of 20% for distinguishing PCNSL from other CNS 
tumors [163]. Moreover, a peripheral residual disease 
biomarker has demonstrated high predictive value for 
relapse, and when integrated with clinical risk factors and 

radiographic response into a molecular prognostic index, 
it provided strong predictive power for CNSL outcomes 
[164].

Beyond primary CNSL, predicting CNS relapse in 
DLBCL remained challenging. Mutations in MYD88L265P 
and CD79BY196 were detectable in CSF ctDNA approxi-
mately one month before clinical diagnosis, suggesting 
their utility in early detection of CNS relapse in lym-
phoma patients [165–168]. However, as 15-20% of CNSL 
cases lack these mutations, negative results should be 
interpreted with caution. In a cohort study of 126 newly 
diagnosed DLBCL and 24 PCNSL cases, pretreatment 
CSF ctDNA demonstrated 100% sensitivity and 77.3% 
specificity for predicting CNS relapse when analyzed 
with a panel of 475 leukemia- and lymphoma-related 
genes [169]. Furthermore, clonotypic DNA was identified 
in all CSF ctDNA samples from patients with parenchy-
mal CNS involvement and in 36% of aggressive lympho-
mas, indicating a 29% risk of CNS recurrence [170].

Peripheral T-cell lymphoma
ctDNA analysis has emerged as a noninvasive diagnos-
tic and genetic profiling tool with broad clinical applica-
tions in PTCL. Detection of mutations in genes such as 
TET2, RHOA, DNMT3A, and IDH2 in plasma ctDNA 
has provided a noninvasive method for diagnosing AITL 
(a subtype of PTCL) [171, 172]. In ENKTL patients, 
plasma ctDNA testing demonstrated a sensitivity of 
72.4% for detecting tumor biopsy variants [173]. Further-
more, CAPP-seq analysis of cfDNA from PTCL patients 
identified novel RHOA mutations, including c.73  A > G 
(p.Phe25Leu) and c.48 A > T (p.Cys16*), which were vali-
dated in additional tissue cohorts. This finding suggests 
that ctDNA sequencing can identify somatic mutations 
not detected in tumor genomic DNA, overcoming tumor 
spatial heterogeneity and providing comprehensive 
genotypic information [174]. The diagnostic capabilities, 
combined with the ability to identify novel mutations, 
highlight the potential of ctDNA analysis not only for ini-
tial diagnosis but also for guiding subsequent treatment 
strategies.

Despite chemotherapy being the standard first-line 
treatment for most PTCL subtypes, treatment resis-
tance limits its efficacy. Noninvasive ctDNA monitoring 
offers dynamic assessment of molecular burden, treat-
ment response, prognostic risk, and MRD. Mutations in 
DDX3X and KMT2D detected in ctDNA from ENKTL 
patients have been associated with poor PFS [175, 176]. 
In cases where Epstein-Barr virus (EBV) DNA was unde-
tectable in whole blood, ctDNA mutations were identi-
fied in 7 of 14 patients, suggesting that ctDNA profiling 
can complement EBV DNA quantification in ENKTL 
monitoring [175]. Analyzing plasma ctDNA muta-
tion profiles in 94 PTCL patients using targeted NGS 
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revealed a significant association between post-treatment 
ctDNA levels and survival outcomes [177]. Moreover, 
tumor-specific clones were identified in 76% of patients 
using NGS-based TCR sequencing of ctDNA; detect-
able ctDNA after treatment predicted worse survival, 
although the prognostic significance throughout treat-
ment was not statistically significant [178]. Another study 
involving 64 Chinese PTCL patients found that high 
pretreatment ctDNA levels were significantly associated 
with adverse clinical markers, and MRD negativity cor-
related with higher remission rates [179]. Collectively, 
these data indicate that ctDNA may have potential for 
noninvasive monitoring of treatment response and pre-
dicting outcomes in PTCL patients, with emerging evi-
dence highlighting its role in high-risk subgroups.

In high-risk ENKTL patients, targeted NGS of tumor 
tissue and longitudinal plasma ctDNA showed that low 
pretreatment cfDNA concentrations were associated 
with favorable survival outcomes (1-year PFS: 90.0% vs. 
36.4%; p = 0.012). Patients with rapid clearance of ctDNA 
mutations achieved significantly higher complete remis-
sion rates (80.0% vs. 0%; p = 0.004) and more favorable 
PFS (79.0% vs. 20.0%; p = 0.002) compared to those with 
persistent detectable mutations [173]. A phase 1b/2 study 
assessing ctDNA biomarkers in 38 R/R ENKTL patients 
treated with anti-PD-1 antibodies found that integrating 
plasma ctDNA with EBV DNA provided better prog-
nostic value than either biomarker alone; notably, the 
presence of STAT3 mutations predicted an inferior prog-
nosis [180]. These findings reinforce the clinical utility 
of ctDNA dynamics in risk stratification and treatment 
response assessment. However, due to the limited sample 
size, larger cohorts are needed to validate the predictive 
value of ctDNA monitoring for treatment outcomes.

Apart from tumor-specific genetic variations, epigen-
etic alterations in ctDNA have been investigated for diag-
nostic and prognostic purposes in ENKTL. A diagnostic 
prediction model incorporating seven ctDNA methyla-
tion markers achieved an area under the curve (AUC) of 
0.988 in an independent validation cohort. By combining 
the seven-marker ctDNA methylation prognostic score 
with the prognostic index of natural killer (PINK) risk 
system, the PINK-C risk stratification model was devel-
oped, achieving an AUC of 0.773 in predicting prognosis 
[181]. The PINK-C model demonstrated distinct prog-
nostic stratification levels. However, as these models are 
based on retrospective data, their specificity and sensitiv-
ity require validation in future prospective studies.

Hodgkin’s lymphoma
For cHL, ctDNA profiling with CAPP-seq has shown 
great promise. Specifically, ctDNA analysis identified 
approximately 87.5% of tumor variants present in biopsy 
samples from 80 newly diagnosed and 32 refractory 

patients, supporting ctDNA as a potential noninvasive 
profiling tool [76]. Notably, plasma ctDNA exhibited a 
higher median variant allele fraction than biopsy sam-
ples, likely reflecting the low tumor cell content typi-
cally present in cHL biopsies. This observation further 
underscores the utility of ctDNA in molecular profiling 
[34]. Certain mutations detected by ctDNA, including 
XPO1E571K, STAT6 and SOCS1, help distinguish cHL 
from other lymphoma types such as DLBCL, PMBL, 
ALCL and MGZL [76, 81, 182–184]. In addition to diag-
nostic insights, ctDNA profiling offers valuable informa-
tion about the clonal structure and evolution in cHL. 
Some mutations in oncogenes and tumor suppressors, 
such as GNA13, XPO1, NFKBIE, IKBKB, CSF2RB, and 
B2M, are clonal, present across most cells, while others, 
like PRBM1, NOTCH2, CHD2, and BCR, appear as sub-
clonal mutations [75]. Longitudinal ctDNA monitoring 
(41 samples from 13 patients) revealed that chemother-
apy partially reshapes subclonal diversity, while salvage 
therapy with nivolumab suppresses dominant clones and 
promotes the emergence of new ones, thereby highlight-
ing the utility of ctDNA in tracking clonal shifts over the 
course of treatment [76].

ctDNA profiling in cHL also carries prognostic signifi-
cance. For example, detecting the XPO1E571K mutation 
via ddPCR is associated with shorter PFS, with a 2-year 
PFS of 57.1% in mutation-positive patients compared 
to 90.5% in mutation-negative patients [182]. Similarly, 
TP53 mutations in ctDNA correlate with inferior PFS 
(p = 0.0038) [75]. Baseline ctDNA levels before treatment 
initiation have been linked to clinical features such as 
elevated TMTV, higher Hasenclever international prog-
nostic scores (≥ 3), increased LDH levels, and advanced 
disease stages, suggesting that baseline ctDNA may serve 
as a valuable supplement to traditional prognostic mark-
ers [77, 81, 185].

Moreover, the role of ctDNA in monitoring treatment 
response and predicting relapse has also been demon-
strated in HL. Longitudinal ctDNA monitoring combined 
with PET/CT imaging identified disease progression in 
38% of patients, with a negative predictive value of 99% 
when both ctDNA and PET/CT results were negative, 
suggesting that ctDNA may improve the predictive accu-
racy of PET/CT in clinical management [76]. Further-
more, in patients with advanced cHL, a 2-log reduction 
in ctDNA levels after two cycles of ABVD (doxorubicin, 
bleomycin, vinblastine, dacarbazine) chemotherapy was 
predictive of CR, supporting a threshold previously vali-
dated in DLBCL [76].

The timing of ctDNA assessment during treatment has 
been shown to impact prognostic accuracy. Patients with 
high pretreatment ctDNA levels and detectable ctDNA 
throughout treatment (e.g., at C1D15, C3D1, and post-
four cycles) experienced significantly worse PFS (p < 0.05) 
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[34]. Molecular remission rates improved at sequential 
time points (C1D15, C2D1, and C3D1), with MRD neg-
ativity rates reaching 38%, 85% and 90%, respectively. 
Additionally, ctDNA monitoring as early as one week into 
treatment correlated with PET response and predicted 
PFS [75]. In pediatric Hodgkin lymphoma, targeted NGS 
showed that ctDNA was undetectable in patients who 
achieved an early PET response (qPET < 3), suggesting 
favorable outcomes [77]. Although ctDNA has shown 
considerable potential for clinical applications in HL, fur-
ther prospective clinical trials are necessary to determine 
if MRD status, whether detectable or undetectable, can 
reliably inform decisions on treatment intensification or 
de-escalation.

Conclusions and perspectives
The emergence of ctDNA as a biomarker represents a 
major advance in lymphoma management, with applica-
tions spanning diagnosis, risk stratification, treatment 
monitoring, and MRD assessment. By providing com-
prehensive molecular insights through non-invasive 
sampling, ctDNA enables real-time tracking of disease 
burden, response to therapy, and clonal evolution, paving 
the way for personalized approaches to lymphoma care. 
Recent innovations in ctDNA analysis, including ctDNA 
fragmentation and methylation profiling, further expand 
its diagnostic and prognostic capabilities, potentially 
improving precision medicine in lymphoma.

The opportunities presented by ctDNA are substan-
tial. It facilitates non-invasive genotyping, overcom-
ing the limitations of tissue biopsies, such as spatial 
heterogeneity and insufficient sample material. ctDNA 
quantification provides a dynamic assessment of tumor 
burden, correlating with established prognostic fac-
tors like the IPI and TMTV. Moreover, its role in MRD 

detection surpasses traditional imaging techniques in 
sensitivity and specificity, allowing for earlier interven-
tion upon relapse. When combined with emerging tech-
nologies such as NGS and epigenetic profiling, ctDNA 
can refine prognostic models and identify therapeutic 
targets. However, several challenges must be overcome 
before ctDNA can be fully integrated into routine clini-
cal practice (Fig.  5). Standardizing preanalytical work-
flows remains critical, as variability in sample handling 
and processing can impact test accuracy. Furthermore, 
while ctDNA provides valuable insights, establishing 
optimal thresholds for clinical decision making, such as 
MRD or treatment response, requires further validation 
in large, prospective studies. In addition, the complexity 
of ctDNA data requires robust computational methods 
to integrate multiple molecular and clinical parameters. 
Advances in machine learning may help overcome these 
challenges and ultimately advance the clinical application 
of ctDNA as a reliable tool in lymphoma management.

Despite challenges in clinical implementation, emerg-
ing evidence supports ctDNA as a dynamic biomarker 
to guide lymphoma therapy [25–27]. Integrating ctDNA 
detection into clinical trial designs may improve thera-
peutic precision by enabling early and accurate monitor-
ing of treatment response, MRD, and clonal evolution 
- potentially surpassing conventional imaging and biopsy 
methods. For instance, future trials in aggressive lym-
phomas such as DLBCL could incorporate early ctDNA 
monitoring to stratify patients based on their molecu-
lar response to frontline chemoimmunotherapy (e.g., 
R-CHOP). Patients who demonstrate rapid ctDNA 
clearance after one or two cycles of treatment could be 
candidates for de-escalated therapy, thereby reducing 
exposure to potentially toxic regimens without com-
promising efficacy. Conversely, patients with persistent 

Fig. 5 Key challenges in implementing ctDNA testing in clinical practice
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ctDNA positivity could be assigned to intensified or 
alternative therapeutic arms incorporating novel agents 
(e.g., targeted therapies or immunomodulators) to over-
come early resistance. This adaptive approach leverages 
ctDNA dynamics to inform real-time, personalized treat-
ment decisions that may ultimately improve progression-
free and overall survival.

In indolent lymphomas such as FL, which exhibit a 
slow yet variable course and significant clonal heteroge-
neity, serial ctDNA-based testing could help track clonal 
evolution and emerging resistance mutations during tar-
geted therapies (e.g., PI3K inhibitors, immunomodula-
tors) [147]. A future trial might regularly assess ctDNA 
profiles throughout treatment and follow-up, enabling 
early identification of resistance-associated genetic alter-
ations. This, in turn, could prompt a timely therapeutic 
switch or the addition of combination strategies aimed at 
suppressing resistant clones before overt relapse. Such a 
personalized approach not only refines treatment deci-
sions but also provides deeper insights into the molecular 
mechanisms driving disease progression and resistance.
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