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Abstract 

Cancer continues to be a major global health burden, with high morbidity and mortality. Building on the success 
of immune checkpoint inhibitors and adoptive cellular therapy, cancer vaccines have garnered significant inter-
est, but their clinical success remains modest. Benefiting from advancements in technology, many meticulously 
designed cancer vaccines have shown promise, warranting further investigations to reach their full potential. Cancer 
vaccines hold unique benefits, particularly for patients resistant to other therapies, and they offer the ability to initi-
ate broad and durable T cell responses. In this review, we highlight the antigen selection for cancer vaccines, intro-
duce the immune responses induced by vaccines, and propose strategies to enhance vaccine immunogenicity. 
Furthermore, we summarize key features and notable clinical advances of various vaccine platforms. Lastly, we delve 
into the mechanisms of tumor resistance and explore the potential benefits of combining cancer vaccines with stand-
ard treatments and other immunomodulatory approaches to improve vaccine efficacy.
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Background
Cancer presents a significant global health challenge, 
with 20 million new cases and 9.7 million deaths reported 
in 2022 [1]. Despite advancements in traditional cancer 
treatments such as surgery, chemotherapy, and radiother-
apy, many cancers remain difficult to cure, particularly 
in advanced stages where treatment options are limited. 
Recently, immunotherapies such as immune checkpoint 
inhibitors (ICIs), adoptive cell therapy (ACT), and can-
cer vaccines have emerged as promising approaches to 
leverage the host immune system against malignancies 
[2]. While ICIs and ACT have shown efficacy in specific 
patient populations, their success remains limited, with 

only a subset of patients achieving sustained responses 
[3]. Cancer vaccines, however, offer a unique advantage 
by priming new T cells, potentially targeting a broader 
array of tumor antigens and inducing more durable 
immune responses [4, 5].

Cancer vaccines deliver target antigens, often in com-
bination with adjuvants, to evoke or amplify the host 
immune system, especially T-cell immunity, to recognize 
and eliminate malignant cells. [6–8].They are broadly 
categorized into two types: therapeutic and prophylactic 
cancer vaccines. Therapeutic cancer vaccines are post-
exposure treatments that induce potent cellular immune 
responses to eliminate existing cancer cells and establish 
long-lasting immune memory to prevent recurrence, 
such as the first Food and Drug Administration (FDA)-
approved DC vaccine Sipuleucel-T [6]. In contrast, pro-
phylactic cancer vaccines are designed to stimulate the 
immune system in tumor-free individuals, generating 
antibodies and immune memory cells that reduce the 
risk of cancer development [9]. Oncoviruses, such as 
human papillomavirus (HPV), hepatitis B virus (HBV), 
and Epstein-Barr virus, are responsible for approximately 
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12% of newly diagnosed cancer cases. Prophylactic vac-
cines targeting some of these viruses, including HPV and 
HBV, have significantly contributed to the prevention 
of virus-related cancers [10]. For instance, a nationwide 
study showed that the quadrivalent HPV vaccine reduced 
the incidence of invasive cervical cancer by half [11]. The 
FDA has approved prophylactic vaccines targeting HPV 
and HBV, which are highly recommended by the Advi-
sory Committee on Immunization Practices [12, 13].

In this review, we first discuss antigen repertoires for 
vaccines, highlighting the identification of neoantigens. 
Next, we introduce how cancer vaccines activate the 
immune system, and point out the influence of adju-
vants and administration routes on shaping the vaccine 
efficacy. Following this, we introduce various vaccine 
platforms currently in use, describing their strengths, 
limitations, and important clinical applications. Finally, 
we summarize the resistance mechanisms posed by 
tumors and evaluate the benefits of combination thera-
pies, which may help to overcome these barriers and 
improve the efficacy of cancer vaccines in the manage-
ment of solid tumors.

The mechanism of cancer vaccines
The selection of targeted antigens
Heterogeneity, an important characteristic of cancer, 
encompasses intertumoral differences across cancer 
types and individuals, as well as intratumoral genomic 
variations within tumor subclones [14]. For example, 
molecular subtypes of breast cancer determine treatment 
strategies, with tamoxifen for estrogen receptor-positive 
patients and trastuzumab for human epidermal growth 
factor receptor 2 (HER2)-positive patients [15]. Cancer 
genetic instability presents both challenges and oppor-
tunities. While higher mutation burden leads to stronger 
specific T cell responses and better clinical outcomes 
with ICIs, it also enables cancer to develop immune 
escape and drug resistance [16–18]. Therefore, the opti-
mal selection and design of targeted antigens are critical. 
Ideal antigens are considered to be safe, highly immuno-
genic, tumor-specific, and applicable to a broad patient 
population [19].

Generally, tumor antigens are classified into two 
types: tumor-associated antigens (TAAs) and tumor-
specific antigens (TSAs) (Table 1) [20]. TAAs are “self-
antigens” abnormally expressed in tumors, including 
overexpressed proteins, cancer germline proteins, and 
tissue-differentiation proteins [5]. TAAs can be found 
across different cancers and are shared among patients, 
which facilitates large-scale production of vaccines. 
However, the efficacy of cancer vaccines targeting 
TAAs is limited due to central thymus tolerance, which 
restricts high-affinity T cell receptors for self-peptides, 

necessitating additional immunostimulatory interven-
tions [21]. Since TAAs are not exclusive to tumors, 
vaccines targeting them carry the risk of on-target/
off-tumor toxicity, which can potentially harm normal 
tissues [22]. In contrast, TSAs, including viral onco-
proteins and neoantigens, provide high specificity and 
immunogenicity [23]. But neoantigens are highly indi-
vidual-specific, posing challenges for vaccine develop-
ment in terms of complexity, feasibility and cost.

Neoantigens derive from various genomic altera-
tions including single-nucleotide variants, insertions 
and deletions, frameshifts, gene fusions, and human 
endogenous retroelements. They can also result from 
aberrant transcriptions (such as splicing events, poly-
adenylation, RNA editing), alternative translation 
involving non-canonical open reading frame (ORF), 
long non-coding RNA, and changed start codons, as 
well as abnormal proteasome process and post-trans-
lational modifications (like phosphorylation, glyco-
sylation, and methylation) [20, 24, 25]. Typically, a 
comprehensive neoantigen identification pipeline com-
prises three components: prediction of neoantigens 
based on human leukocyte antigen (HLA) typing, filtra-
tion and prioritization of candidate neoantigens, and 
validation of their immunogenicity. [26].

Advancements in high-throughput sequencing and 
bioinformatic technologies have made next-generation 
sequencing more cost-effective and accessible. Possible 
tumor-specific mutations can be thoroughly screened 
through computational algorithm by comparing the 
whole-exome sequencing, RNA sequencing, and mass 
spectrometry data from tumor and matched nor-
mal tissues [24, 25, 27, 28]. RNA-sequencing provide 
extensive biological information at the gene transcrip-
tion level, such as alternative splicing events and gene 
copy number alterations, and is also used to validate 

Table 1 The category of tumor antigens for cancer vaccines

WT-1, Wilms tumor protein 1; MUC1, mucin 1; HER2, human epidermal growth 
factor receptor 2; EGFR, epidermal growth factor receptor; MAGE, melanoma-
associated antigen; NY-ESO-1, New York esophageal squamous cell carcinoma 
1; PSA, prostate-specific antigen; PAP, prostatic acid phosphatase; gp100, 
glycoprotein 100; MART-1, melanoma antigen recognized by T cells 1; HPV, 
human papillomavirus; LMP, latent membrane protein; HBsAg, hepatitis B virus 
serum antigen

Type Subsets Examples

Tumor-
associated 
antigens 
(TAAs)

Over-expressed proteins WT-1, MUC1, HER2, EGFR, 
survivin

Cancer germline proteins MAGE, NY-ESO-1

Tissue-differentiation proteins PSA, PAP, gp100, MART-1

Tumor-spe-
cific antigens 
(TSAs)

Viral oncoproteins HPV (E6/E7), LMP, HBsAg

Shared neoantigens Mutated RAS, p53

Individual neoantigens Patient-specific
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the expression of mutant genes [29]. Mass spectrom-
etry directly identify abnormal peptides loaded on HLA 
molecules, enabling the discovery of noncanonical anti-
gens [30].

Neoantigen prediction is fundamentally depend-
ent on the patient’s HLA genotypes, which determines 
the repertoire of antigens that can be presented for T 
cell recognition. Numerous bio-informatic tools have 
been developed to identify HLA genotypes, such as 
OptiType and Polysolver for HLA class I alleles, and 
HLA*PRG, ATHLATES, and HLA-HD for both class 
I and II alleles [31–35]. Based on HLA typing, the 
binding of the peptides derived from identified muta-
tions to specific HLA molecules is predicted by com-
putational algorithms like NetMHC, NetMHCpan, and 
MHCflurry [36]. Notably, the prediction of HLA class 
II epitopes has limited accuracy due to their varied 
length and high polymorphism. Studies have shown 
the essential role of antigen-specific  CD4+ T cells, and 
many algorithms such as MixMHC2pred and NetMH-
CIIpan have been developed for HLA class II epitopes 
prediction. [37–40].

After the initial prediction, filtration is conducted to 
refine the list of candidate neoantigens. Factors such 
as expression level, dissimilarity to self-protein, muta-
tion clonality, presentation efficacy, HLA binding affin-
ity, and the stability of the peptide-HLA complex are 
considered, resulting in a ranked list of candidates [41, 
42]. Given the complexity of the immune system and 
the limitations of technologies, it is understandable 
that even highly ranked neoantigens candidates fail 
to elicit robust T cell immune responses [43]. Conse-
quently, predicted antigen sets must undergo valida-
tion for their ability to activate specific T cells, achieved 
through experimental methods such as T cell-based 
assays, enzyme linked immunospot assay, flow cytom-
etry, multicolor-labeled major histocompatibility com-
plex (MHC) tetramers, and T-cell repertoire profiling 
(Fig. 1).

As most neoantigens are individually unique, shared 
neoantigens, arising from common mutations in onco-
genes or tumor suppressor genes across patients, are 
promising candidates for developing public vaccines 
[44]. While personalized vaccines require a long manu-
facturing period (7–16 weeks), developing ready-to-use 
shared-neoantigen vaccines is cost-effective and time-
efficient, especially for patients with limited treatment 
windows [45, 46]. For example, Malekzadeh et al. iden-
tified broad “hotspot” immunogenic TP53 mutations 
across patients with epithelial cancers and provided 
an effective screening approach for common mutated 
tumor neoantigens, including but not limited to KRAS 
and PI3KCA [47].

Immune responses activation
After vaccination, innate immune cells like natural 
killer (NK) cells, neutrophils, and macrophages use 
pattern recognition receptors (PRRs) to recognize for-
eign substances rapidly and initiate specific immune 
responses. Antigen-presenting cells (APCs) in periph-
eral tissues capture, process, and present peptides on 
diverse MHC molecules (known as HLA in humans). 
Endogenous proteins are lysed by proteasome and 
loaded onto MHC-I molecules to activate  CD8+ T cells, 
while exogenous proteins are digested in lysosomes and 
then form antigen-MHC-II complexes for  CD4+ T cells 
[48]. Although the mechanism is still not fully under-
stood, DCs are capable of translocating endocytosed 
proteins into the cytosol for proteasomal degradation 
and MHC-I presentation, a process known as “cross-
presentation” [49].

DCs are the most potent APCs, playing a crucial role 
in regulating innate and adaptive immune responses. 
Human DCs are primarily classified into  CD123+ plasma-
cytoid DCs (pDCs) and conventional DCs (cDCs), with 
cDCs further divided into  CD141+ cDC1s and  CD1c+ 
cDC2s, which resemble mouse  B220+ pDCs, CD8α+ and/
or  CD103+ cDC1s, and  CD11b+ cDC2s, respectively [50]. 
DC subsets display different surface phenotypes and 
immune functions. cDC1s are superior at antigen cross-
presentation to activate  CD8+ T cell and prime type 1 T 
helper cell (Th1 cell), aided by the secretion of interleu-
kin 12 (IL-12) and interferon γ (IFN-γ) [51, 52]. cDC2s 
are vital in initiating  CD4+ T cell, and priming Th2 and 
Th17 cell [53–55]. pDCs, expressing the toll-like receptor 
(TLR) 7 and TLR9, excel at recognizing nucleic acids and 
producing type I IFN, which can be enhanced by granu-
locyte–macrophage colony-stimulating factor (GM-CSF) 
[56, 57].

Upon activated, immature DCs change the expres-
sion of surface molecules, mature with enhanced antigen 
presentation and migration ability, and move to second 
lymphoid organs (SLOs), where they cooperate with lym-
phoid DCs to prime naïve T cells [58, 59]. T cell activa-
tion begins once they recognize antigen-MHC complexes 
via T cell receptors, delivering the first signal. For full 
activation, T cells require sufficient expression of costim-
ulatory molecules and cytokines. APCs express key co-
stimulatory molecules, including CD80/CD86, OX40L, 
CD70, and CD137L, which interact with CD28, OX40, 
CD27, and CD137 on T cells respectively, to enhance T 
cell activation, proliferation, and effector functions [60, 
61]. On the contrary, the interaction between CD80/
CD86 and CTLA-4, as well as between PD-L1/2 and 
PD-1, inhibits T cell activities, which is crucial for pre-
venting autoimmunity but also contributes to tumor 
resistance [61].
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CD4+ Th cells and  CD8+ cytotoxic T lymphocytes 
(CTLs) exit lymphoid organs, infiltrate tumors, and exert 
anti-tumor effects. CTLs induce tumor cell apoptosis 
through granule exocytosis (perforin and granzymes), 
and death receptor engagement (Fas ligand and tumor 
necrosis factor-related apoptosis-inducing ligand) [62]. 
B cells can present tumor antigens to  CD4+ T cells. The 
interaction between CD40 on B cells and its ligand on 
activated T cells is critical for B cell proliferation, germi-
nal center formation, and differentiation into long-lived 
plasma cells [63]. Antibodies produced by B cells activate 
the complement system and bind to tumor cells, lead-
ing to their destruction through direct lysis, the release 
of cytotoxic granules, and phagocytosis [63]. B cell 
responses within the tumor microenvironment (TME) 

promote anti-tumor immunity and enhance sensitivity 
to ICIs [64]. Also, tumor-specific B cells are necessary 
for the generation of IL-21-producing  CD4+ T follicular 
helper cells, which support effector  CD8+ T cell activity 
[65]. Thus, the complex interactions between immune 
components determine the efficacy of cancer vaccines 
(Fig. 2).

The role of adjuvants
Adjuvants are critical in enhancing the effectiveness of 
cancer vaccines, broadly categorized into three main 
groups: immunomodulatory molecules, delivery sys-
tems with adjuvant properties, and combinations of both 
[66]. They amplify immune responses through several 
mechanisms including mimicking pathogen-associated 

Fig. 1 Neoantigens identification and their deriving sources. A The neoantigen prediction process follows a systematic three-step pipeline: 
Prediction involves identifying tumor-specific mutations based on patient HLA typing through tumor DNA, RNA, and protein sequencing 
using computational tools; Filtration ranks the predicted neoantigens by assessing features such as expression levels, the likelihood of being 
processed and presented on major histocompatibility complex (MHC), MHC binding affinity, and antigen specificity; Validation is carried 
out through experimental methods to confirm the ability of neoantigens to elicit specific T cell responses. B Neoantigens originate from several 
mechanisms, including genomic alterations (such as point mutations, gene fusions, and deletions), aberrant transcriptional events, alternative 
splicing or translation, and post-translational modifications. These mechanisms generate tumor-specific antigens that are absent in normal tissues, 
making them ideal targets for personalized cancer immunotherapies aimed at inducing precise immune responses. ELISpot, enzyme linked 
immunospot; SNVs, single-nucleotide variants; INDEL, insertions and deletions; ORF, open reading frame; lncRNA, long non-coding RNA
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molecular patterns, triggering the release of damage-
associated molecular patterns (DAMPs), enhancing 
APCs activation, extending antigen bioavailability, and 
promoting efficient antigen delivery [67].

Common immunomodulators include aluminum 
salts, TLR agonists such as CpG oligonucleotides 
(TLR9 agonist) and polyinosinic-polycytidylic acid 
(poly-ICLC, a TLR3 agonist), and cytokines like GM-
CSF and IL-2. Delivery systems are designed to protect 
antigens from degradation, enhance their bioavailabil-
ity, and improve targeting, encompassing both physical 
and chemical approaches. Physical delivery systems, 
such as electroporation, gene gun, and microneedles, 

primarily function as mechanical tools to efficiently 
transport antigens [68–70]. Chemical delivery systems, 
including water-in-oil emulsions, lipid nanoparticles 
(LNPs), polymeric particles, and nanomaterials, are 
widely used and some possess intrinsic immunostimu-
latory properties that qualify them as adjuvants [71]. 
What’s more, many advanced adjuvants combine both 
immunomodulatory and delivery properties. For exam-
ple, TLR-7/8 agonists-conjugated peptide vaccines, 
chemically designed for nanoparticle self-assembly, 
significantly enhanced  CD8+ T cell responses against 
cancer antigens by boosting innate immune responses 
and increasing antigen uptake by DCs [72]. Despite 

Fig. 2 Immune responses induced by cancer vaccines. (1) Upon vaccination, antigen-presenting cells (APCs), particularly dendritic cells (DCs), 
capture, process, and present antigens on their surface. Different DC subsets possess distinct abilities to activate specific T cell subsets. As DCs 
mature, they migrate to secondary lymphoid organs like draining lymph nodes. (2) For effective T cell activation, three critical signals are required. 
Signal 1 is the combination between antigen-MHC complexes on the APC and T cell receptors. Signal 2 involves co-stimulatory molecules, which 
amplify the activation signal. Signal 3 consists of immunomodulatory cytokines and chemokines that influence T cell differentiation and functions. 
Once activated, T cells differentiate into effector cells, including  CD4+ helper T (Th) cells, cytotoxic  CD8+ T lymphocytes (CTLs), and memory T 
cells.  CD4+ T cells, along with follicular dendritic cells (fDCs), assist in the B cells maturation, leading to the differentiation into antibody-producing 
plasma cells and memory B cells. (3) Activated immune cells infiltrate the tumor and exert anti-tumor functions. CTLs induce tumor cell 
apoptosis through perforin, granzymes, and Fas ligand engagement, while B cells employ antibody-dependent cellular cytotoxicity (ADCC) 
and complement-dependent cytotoxicity (CDC). Tumor-infiltrating APCs can also present antigens to boost cellular immune responses 
against tumor. cDCs, conventional DCs; pDCs, plasmacytoid DCs; Mo-DCs, monocyte-derived DCs; CCR, C–C motif chemokine receptor; IFN, 
interferon; IL, interleukin; TNF, tumor necrosis factor; CD40L, CD40 ligand; PD-1, programmed death-1; PD-L1, programmed death ligand-1



Page 6 of 30Zhou et al. Journal of Hematology & Oncology           (2025) 18:18 

these advancements, challenge lies in selecting the 
appropriate adjuvant for different cancer vaccines to 
optimize immunogenicity, which can also be influenced 
by the administration route, disease stage, and patient 
characteristics.

The route of administration
Cancer vaccines can be administered through intra-
muscular, subcutaneous, intradermal, intravenous, 
intratumoral, oral, and mucosal route, each with dis-
tinct effects on vaccine efficacy, immune response, and 
safety. The subcutaneous route was demonstrated to 
enhance nanoparticle delivery to drain lymph nodes 
and elicit more neoantigen-specific T cells compared to 
intramuscular route [73]. In tumor-bearing mice, both 
subcutaneous and intravenous administration of vac-
cine generated specific tumor-infiltrating T cells (TILs), 
but only intravenous route mediated tumor regression 
and downregulated immunosuppressive monocytes 
[74]. Mucosal administration, like atomization, intra-
nasal, and sublingual routes, shows promise for induc-
ing mucosal immunity. Tissue-resident memory T cells 
(TRMs), preferentially induced by mucosal immuni-
zation, are attractive biomarkers due to their strate-
gic tissue localization and direct cytotoxic capacities, 
associated with better survival rates [75–77]. When 
choosing the administration route, factors like the vac-
cine type and volume, desired immune response, tumor 

location, and patient condition should be considered to 
optimize outcomes.

The features and clinical landscape of different 
vaccine platforms
This section provides an overview of the advantages and 
limitations of various vaccine platforms (Table  2), each 
characterized by unique action mechanisms and immu-
nogenicity profiles. We highlight innovative preclinical 
studies and key clinical outcomes associated with these 
platforms. Furthermore, given the rapid advancements 
and significant potential of neoantigen-based vaccines, a 
dedicated subsection is included to explore this promis-
ing area in detail.

Peptide‑based cancer vaccines
Peptide-based cancer vaccines are minimally toxic, 
cost-effective to manufacture, and highly stable. How-
ever, they face several limitations including low immu-
nogenicity, short half-life, susceptibility to degradation, 
and the most critical one, HLA restriction [78]. Short 
peptides (SPs), typically 8–11 amino acids in length, are 
exact MHC binding epitopes, but they can directly bind 
to MHC-I molecules on non-professional APCs, which 
cannot provide enough co-stimulatory signals for full 
T cell activation, potentially leading to immune anergy 
or tolerance [79, 80]. SP vaccine only transiently acti-
vated  CD8+ effector T cells with insufficient migration 
to secondary lymphoid organs, which can be addressed 
by adding MHC-II peptide or using longer peptide [81]. 

Table 2 Features of different cancer vaccine platforms

Vaccine platform Advantages Limitations Examples

Peptide Easy of production;
Minimal toxicity;
High specificity and safety

Limited immunogenicity;
Short half-life;
HLA restriction

OSE2101, IO101

DNA Cost-effectiveness;
Stable;
Durable immunity

Risk of gene integration;
Limited immunogenicity;
Low transfection efficacy

GX-188E, VGX-3100

mRNA Flexibly modified;
Rapid production;
Potent immune activation

Instability;
Inefficient delivery;
Prone to be degraded

BNT111, mRNA-4157(V940)

Replication-defective viruses High immunogenicity;
High delivery efficiency

Pre-existing immunity;
Unintended viral spread

TG4010, TroVax

Virus-like particles High immunogenicity;
No risk of infection;
Stable and Scalable production

Limited T-cell activation;
Formulation issues;

Gardasil 9, ES2B-C001, CMP-001

Oncolytic viruses Direct tumor lysis;
Potent immune activation;
Strong targeting

Safety risks;
Immune clearance;
Complex production

T-VEC, RP-1, JX-594

Tumor cells Broad antigen coverage;
Reduced off-target effects

Risk of tumorigenicity;
Complex production

GVAX, M-Vax, Canvaxin

Dendritic cells Effective antigen presentation;
Strong T cell activation

High cost;
Complex production

Sipuleucel-T, Ilixadencel
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SurVaxM, a bulging SP vaccine targeting survivin, when 
combined with GM-SCF and temozolomide, prolonged 
median overall survival (OS) to 25.9 months in patients 
with newly diagnosed glioblastoma, compared with 
14.6–16.0 months of standard care [82].

In contrast, synergic long peptides (SLPs), 22–45 amino 
acids, contain both MHC-I and II epitopes and must 
be processed by professional APCs [83]. Therefore, SLP 
vaccines induce effective anti-tumor  CD4+ and  CD8+ T 
cells responses, as  CD4+ T cells greatly enhance  CD8+ T 
cell recruitment, proliferation, and antitumor function 
by secreting IL-2 and IFN-γ [83, 84]. SLPs elicit a higher 
quality of CTL than SPs due to a prolonged antigen 
presentation duration by DCs [80]. Also, SLPs are more 
rapidly and efficiently processed by DCs than whole pro-
teins [85]. SLP vaccine targeting HPV16 E6/E7 induced 
specific T cell immunity in all patients [86, 87]. Notably, 
self-renewing specific  CD8+ memory T cell was identi-
fied beyond 10 years in patients with longer survival after 

peptide vaccination, underscoring its pivotal role in sus-
taining durable antitumor immunity [88].

In hindsight, many peptide-based cancer vaccines 
simultaneously targeted several epitopes and combined 
adjuvants or other therapies in clinic setting, which have 
elicited potent immunologic responses across various 
malignancies, but clinical outcomes are controversial 
(Table  3) [89–93]. A mucin 1 (MUC1) peptide vaccine, 
mixed with poly-ICLC, elicited robust immune responses 
but failed to prevent recurrence in patients with resected 
colorectal adenoma [94]. Similarly, adding a ten-pep-
tide vaccine with GM-CSF to first-line sunitinib signifi-
cantly increased the number of  CD8+ T cells, but did not 
yield clinical improvements in patients with metastatic 
or advanced renal cell carcinoma [95]. OSE2101, com-
posed of nine peptides targeting five TAAs and a pan-
DR T helper cell epitope, achieved a median survival of 
17.3  months in patients with advanced non-small cell 
lung cancer (NSCLC) in an early phase II study [96]. 

Table 3 Selected phase II-III clinical trials of peptide/protein-based cancer vaccines

NSCLC, non-small cell lung cancer; BC, breast cancer; IHC, immunohistochemistry; GM-CSF, granulocyte–macrophage colony-stimulating factor; DFS, disease-free 
survival; OS, overall survival; ORR, overall response rate; PFS, proliferation-free survival; PDAC, pancreatic ductal adenocarcinoma

Platform Vaccine: targets Year, Phase, reference Target cancer Route Results
Sample number

Lipo-peptide Tecemotide (L-BLP25): 
MUC1

2014, phase III, 
NCT00409188 [301]

Unresectable stage III 
NSCLC after chemoradio-
therapy/1239

Subcutaneous No improvement compared 
to placebo

Peptide IMA901: ten tumor-associ-
ated peptides

2016, phase III, 
NCT01265901 [95]

HLA-A*02-positive, 
metastatic and/or locally 
advanced cell renal cell 
carcinoma/1171

Intradermal No improvement compared 
to sunitinib

Peptide Nelipepimut-S: E75 
with GM-CSF

2019, phase III, 
NCT01479244 [101]

T1–T3, HER2 IHC 1 + /2 + , 
node-positive BC/758

Intradermal No improvement compared 
to placebo

2020, phase IIb, 
NCT01570036 [102]

HER2 IHC 1 + /2 + , FISH 
nonamplified BC, node 
positive and/or hormone 
receptor-negative BC/275

No improvement compared 
to GM-CSF alone

Peptide GP2 with GM-CSF 2021, phase IIb, 
NCT00524277 [99]

HER2 1–3 + , node-positive 
and high-risk node-nega-
tive BC/168

Intradermal 100% 5-year DFS in HER2 IHC 
3 + BC

Peptide OSE2101: peptides target-
ing five TAAs plus PADRE

2023, phase III, 
NCT02654587 [97]

HLA-A2-positive advanced 
NSCLC with resistance 
to immunotherapy/219

Subcutaneous Improved median OS (11.1 
vs 7.5 months) compared 
to chemotherapy

Peptide IO102-IO103: IDO 
and PD-L1

2023, Phase II, 
NCT03047928 [105]

Anti-PD-1 naïve patients 
with metastatic mela-
noma/30

Subcutaneous ORR: 80%, median PFS: 
25.5 months

Peptide GV1001: 16 amino acids 
from human telomerase 
reverse transcriptase

2024, phase III, 
NCT02854072 [302]

Untreated advanced PDAC 
with high serum eotaxin 
levels/148

Intradermal Improved median OS 
(11.3 months) compared 
to chemotherapy alone 
(7.5 months)

Protein MAGE-A3 protein combined 
with AS15

2016, phase III, 
NCT00480025 [303]

Resected stage IB, II, 
and IIIA MAGE-A3-positive 
NSCLC/2312

Intramuscular No improvement compared 
to placebo

2018, phase III, 
NCT00796445 [304]

Resected, stage IIIB or IIIC, 
MAGE-A3-positive cutane-
ous melanoma/1345

No improvement compared 
to placebo
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Later, in a larger phase III clinical trial, OSE2101 mon-
otherapy demonstrated better efficacy and safety than 
standard chemotherapy, significantly prolonging median 
OS (11.1 vs 7.5  months) and post-progression survival 
(7.7 vs 4.6 months) in patients with secondary resistance 
to immunotherapy [97].

Peptide-based vaccines for breast cancer have been 
extensively explored and some demonstrate therapeutic 
potential, such as E75, GP2, and AE37 vaccines target-
ing HER2 [98, 99]. E75 vaccine reduced the recurrence 
rate in patients with breast cancer in phase II clinical 
trial, but failed to meet the primary survival endpoint in 
subsequent phase III trial [100, 101]. Furthermore, the 
combination of E75 vaccine with trastuzumab did not 
improve disease-free survival (DFS) in high-risk HER2 
low-expressing breast cancer [102]. Nevertheless, sub-
group analyses indicated potential benefits in patients 
with triple-negative breast cancer (TNBC) or those who 
are HLA-24 positive [98, 103].

What’s more, innovations aiming at immune modu-
lation rather than direct tumor antigen targeting offer 
new and generalized strategies. IO101, an indoleam-
ine 2,3-dioxygenase (IDO)-derived HLA-A2-restricted 
peptide vaccine, targets IDO-expressing tumor cells 
and immunosuppressive cells, elicited long-lasting dis-
ease stabilization in patients with advanced NSCLC 
[104]. IO102-IO103, a bispecific vaccine targeting IDO 
and PD-L1, reached 80% objective response rate (ORR) 
and 25.5-month median progression-free survival (PFS) 
in anti-PD-1 therapy naïve patients with metastatic 
melanoma [105]. Moreover, the phase III trial examin-
ing the combination of IO102-IO103 with pembroli-
zumab is ongoing in patients with advanced melanoma 
(NCT05155254).

Nucleic acid‑based cancer vaccines
Nucleic acid-based vaccines, including DNA and RNA 
formulations, elicit robust humoral immune responses 
due to their intrinsic adjuvant immunogenicity. RNA can 
directly translate in the cytoplasm using the host’s cellu-
lar machinery. In contrast, DNA must enter the nucleus, 
allowing for prolonged target protein production but 
posing a risk of integration into the host genome [106]. 
After protein translation, specific T cells are elicited 
either through direct antigen presentation by the trans-
fected cells or cross-presentation by DCs. Owing to the 
capability of covering multiple epitopes simultaneously, 
nucleic acids are powerful platform for eliciting broader 
CTL responses. Additionally, the sequences of DNA and 
RNA can be flexibly adjusted, enabling the design of vac-
cines that express cytokines, chemokines, and tumor 
suppressors.

DNA‑based vaccines
DNA cancer vaccines are typically double-stranded bac-
terial plasmid DNA containing eukaryotic gene regula-
tory elements, which are well tolerated, stable, and easy 
of manufacturing, but exhibit low immunogenicity and 
transfection efficacy [106]. Double-strand DNA activates 
the stimulator of interferon genes via cyclic GMP-AMP 
synthase (cGAS), triggering the expression of inflamma-
tory molecules like IFNs, while CpG motifs are recog-
nized by TLR9 and Z-DNA by Z-DNA binding protein 1 
[107–109]. Conventional administration of naked DNA 
is inefficient, which can be improved by physical deliv-
ery technologies such as electroporation, gene gun, and 
microneedle, but these methods face challenges in clini-
cal implementation [110]. Enhancing vaccine immu-
nogenicity involve using chimeric DNA, optimizing 
sequence or delivery system, and incorporating adju-
vants. For example, a xenogeneic tyrosinase DNA vac-
cine broke immune tolerance and induced detectable 
immune responses [111]. Wu et al. developed a red blood 
cell hitchhiking strategy for the spleen-targeted delivery 
of polymeric nanoparticle-encapsulated DNA vaccine, 
resulting in complete tumor regression in mice model 
[112].

In a phase 1 nonrandomized clinical trial, a plasmid 
DNA vaccine encoding the HER2 intracellular domain 
demonstrated safety and immunogenicity in patients 
with advanced-stage HER2-positive breast cancer, with 
some evidence of clinical benefit [113]. GX-188E, a ther-
apeutic HPV E6/E7 DNA vaccine, incorporated with 
Fms-related tyrosine kinase 3 (Flt3) and the tissue plas-
minogen activator signal sequence, enhanced the antigen 
process and presentation by DCs [114]. After vaccina-
tion, patients diagnosed with grade 3 cervical intraepi-
thelial neoplasia (CIN3) displayed robust Th1-polarized 
cellular immune responses, with a majority exhibiting 
specific multifunctional  CD8+ T cells [114]. The combi-
nation of GX-188E and pembrolizumab is currently being 
tested in a phase II trial for patients with inoperable 
cervical cancer, and the interim results have been posi-
tive [115]. Also, intramuscular administration of VGX-
3100, targeting HPV E6/E7, followed by electroporation, 
yielded significant histopathological regression and virus 
clearance rate in patients with confirmed CIN2/3 [70]. 
The therapeutic effects were associated with the mag-
nitude of perforin expression, antibody production, and 
the presence of specific  CD8+ T cells [70]. The phase 
III clinical trial of VGX-3100 (NCT03721978) has been 
reported to achieve positive results. Another therapeutic 
DNA vaccine, GNOS-PV02, encoding up to 40 personal-
ized neoantigens co-administered with plasmid-encoded 
IL-12 plus pembrolizumab, yielded a 30.6% ORR with 
8.3% complete response (CR) in patients with advanced 
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hepatocellular carcinoma [116]. Notably, the level of anti-
gen-specific T cell responses, induced by GNOS-PV02, 
was found to be positively correlated with the num-
ber of neoantigens [116]. These findings underscore the 
potential of therapeutic DNA vaccines and highlight the 
employment of immunomodulators and neoantigens.

mRNA‑based vaccines
mRNA vaccines hold promise due to their safety, effi-
cacy, and cost-effective production, which has been indi-
cated to be a superior vaccine platform than DNA and 
recombinant protein [117]. The most common method 
for synthesizing mRNA is in vitro transcription, utilizing 
bacteriophage RNA polymerase and linear DNA tem-
plate, which is simple, quick, and enables large-scale pro-
duction [118]. Importantly, the purification of mRNA is 
crucial to avoid excessive immune responses triggered by 
impurities like double-stranded RNAs (dsRNAs), which 
can undermine vaccine efficacy [119]. Guanosine and 
uridine-rich single-stranded RNAs can activate endoso-
mal TLR7/8 in immune cells, resulting in the secretion 
of inflammatory cytokines like IFN-α and tumor necro-
sis factor-α (TNF-α) [120, 121]. dsRNAs, generated from 
in  vivo or in  vitro transcription process, can activate 
intracellular receptors such as TLR3 and retinoic acid-
inducible gene-I, which in turn activate nuclear factor-
kappa B and IFN regulatory factor 3, inducing antiviral 
molecules like type-I IFN [122–124]. However, excessive 
IFNs can lead to RNA degradation, prevent RNA repli-
cation and translation, and impair CTL responses [125]. 
Challenges related to stability, in vivo delivery, and high 
immunogenicity remain, promoting efforts in sequence 
optimization, chemical modification, and improved 
delivery technology [126].

mRNA vectors have evolved into several types, with 
the two classic types being conventional non-replicating 
mRNA and self-amplifying mRNA (saRNA). Both types 
consist of 5′ cap, 5′-untranslated region (UTR), ORF, 
3′-UTR and poly (A) tail [126]. Unlike conventional 
mRNA, which contains a single ORF for the targeted 
antigens, saRNA includes an additional ORF derived 
from alphavirus for viral replication machinery, facilitat-
ing persistent RNA amplification and antigen expression 
within host cells [127]. A novel advancement, trans-
amplifying mRNA (taRNA), places the replicase and 
target gene on two separate molecules, which prevents 
viral protein expression and thus enhances safety [128]. 
TaRNA has higher translational efficiency, allowing for 
shorter RNA with less interference with host cellular 
protein translation [128]. Additionally, simplified taRNA 
exhibits enhanced replicative proficiency, resulting in 
higher antibody titers in immunized mice with mini-
mal antigen-coding transreplicon [129]. Circular RNA 

(circ-RNA) is highly stable but difficult to synthesize, and 
its closed ring structure protects it from exonuclease-
mediated degradation [130]. Circ-RNA has been demon-
strated to mediate stronger and long-lasting expression 
of neutralizing antibodies [118]. Short dsRNA has been 
designed as an adjuvant to tether onto linear mRNA, 
with immune response intensity adjustable by modify-
ing its length, sequence, and quantity [131]. A comb-
structured mRNA vaccine formulated in anionic lipoplex 
(LPX) achieved significant therapeutic effects in a mouse 
lymphoma model [131].

RNA packaging and delivery technologies have 
advanced to protect naked RNA from ubiquitous RNase 
and ensure effective delivery to target organs. Various 
carriers such as protamine, polymers, cationic emulsions, 
virus-like particles (VLPs), LPXs, and especially LNPs, 
have been explored [132]. For instance, complemented 
with optimally adjusted LPX, an intravenously injected 
mRNA vaccine effectively reached APCs in body-wide 
SLOs, triggering pDCs in the spleen to release IFN-α, 
eliciting profound T cell responses and tumor regression 
[133]. Additionally, selective organ targeting nanoparti-
cle was developed for extrahepatic targeting to minimize 
hepatotoxicity [134]. LNP 113-O12B mediated lymph 
node-targeting mRNA delivery, while Iso-A11B5C1, ion-
izable LNPs, showed muscle-specific delivery with mini-
mized off-target effects in the lung and liver [135, 136]. 
The employment of adjuvants in mRNA vaccines remains 
controversial, as most mRNA vaccines used in the clinic 
are adjuvant-free [137]. In conclusion, selecting the opti-
mal mRNA vectors and delivery systems is crucial for the 
effectiveness of mRNA-based cancer vaccines.

Building on the successful application of mRNA vac-
cines during the COVID-19 pandemic, mRNA-based 
cancer vaccines hold great promise and are being tested 
in clinical trials, with only one entering phase III so far, 
prompting more researches (Table  4). RNActive® vac-
cines, protamine-formulated, including CV9103 target-
ing various prostate cancer antigens, CV9104 containing 
prostate cancer antigens and MUC1, and CV9201 com-
prising five antigens: New York esophageal squamous cell 
carcinoma 1 (NY-ESO-1), melanoma-associated antigen 
(MAGE) C1/C2, trophoblast glycoprotein, and survivin, 
were well tolerated and immunogenic, but barely showed 
clinical benefit [138–140]. Notably, combining CV9202 
(including antigens from CV9201 along with MUC1) 
with local radiation achieved 46.2% stable disease in stage 
IV NSCLC patients [141]. Furthermore, an investigation 
combining CV9202 with ICIs has been completed, with 
results pending publication (NCT03164772).

The use of LPX and LNP for mRNA vaccines, par-
ticularly in neoantigen vaccines, has become a promi-
nent area of focus. The first-in-human study of a 
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personalized therapeutic mRNA vaccine targeting poly-
neoantigens showed activated neoantigen-specific T 
cell responses in patients with stage III-IV melanoma, 
markedly reducing the recurrent metastatic events and 
potentially improving sensitivity to PD-1 therapy [45]. 
BNT111, an mRNA-LPX vaccine incorporating four 
TAAs (NY-ESO-1, tyrosinase, MAGE-A3, transmem-
brane phosphatase with tensin homology) and com-
bined with anti-PD-1, showed durable partial responses 
in anti-PD-1 resistant melanoma patients in a phase I 
trial, supporting the feasibility of utilizing TAAs with 
potent adjuvant in low-mutation-burden cancers [142]. 
However, disappointing outcomes exist. mRNA-4650, 
targeting neoantigens identified from TILs, successfully 
induced specific T cell responses but without discern-
ible clinical benefit in metastatic gastrointestinal cancer 
[143]. The clinical trial of mRNA-5691, a personalized 
mRNA-LNP vaccine targeting KRAS driver mutations, 
was terminated during phase 1 (NCT03948763). There-
fore, the application of mRNA neoantigen vaccines 

in patients with advanced cancer requires further 
research.

BNT122, an mRNA vaccine encoding maximum 
20 neoantigens individually and formulated with uri-
dine LPX, demonstrated significant clinical efficacy 
when combined with atezolizumab and chemotherapy, 
greatly decreasing the risk of recurrence and death in 
patients with resected pancreatic ductal adenocarcinoma 
(PDAC) [144]. Patients with robust antigen-specific T 
cell responses experienced a longer median recurrence-
free survival (not reached) compared to non-responders 
(13.4 months) [144]. Notably, one patient developed liver 
metastasis but eventually disappeared on imaging, indi-
cating the potential of this vaccine to generate T cells 
capable of eradicating micrometastases [144]. Similarly, 
mRNA-4157(V940), an LNP-formulated personalized 
vaccine consisting of up to 34 neoantigens, demon-
strated its ability to elicit specific T cell responses [145]. 
A phase 2b clinical trial showed that V940-adjuvanted 
therapy reduced the recurrence or death event rate 

Table 4 Selected clinical trials of nucleic acid-based cancer vaccines

OR, overall response; HCC, hepatocellular carcinoma; CR, complete response; HNSCC, Head and neck squamous cell carcinoma

Platform Vaccine: targets Year, Phase, Reference Target cancer Route Results
Sample number

DNA VGX-3100: HPV-16/18 E6 
and E7

2015, Phase IIb, 
NCT01304524 [70]

Adult women with histo-
logically confirmed HPV-16 
or HPV-18-positive stage 
2/3 cervical intraepithelial 
neoplasia/167

Intramuscular Higher histopathological 
regression rate (49.5%) ver-
sus placebo (30.6%)

Phase III, NCT03721978 Completed

DNA GX-188E 2020, phase II, single-arm, 
NCT03444376 [115]

Histologically confirmed 
recurrent or advanced HPV-
positive inoperable cervical 
cancer/36

Intramuscular 42% OR, 58% disease control, 
and 4.9-month median PFS

DNA GNOS-PV02: up to 40 neo-
antigens

2024, phase I-II, single-arm, 
NCT04251117 [116]

Advanced HCC previously 
treated with a multityrosine 
kinase inhibitor/36

Intradermal 30.6% ORR and 8.3% CR

mRNA mRNA-4157 (V940): up to 34 
neoantigens

2024, phase IIb, 
NCT03897881 [146]

Completely resected stage 
IIIB–IV melanoma/157

Intramuscular Longer recurrence-free sur-
vival versus pembrolizumab

Phase III, NCT05933577 High-risk stage II-IV cutane-
ous melanoma

Active, not recruiting

Phase III, NCT06077760 Completely resected Stage II, 
IIIA or IIIB NSCLC

Recruiting

mRNA CV9202: six TAAs Phase I-II, NCT03164772 Metastatic NSCLC Intradermal Completed

mRNA BNT112: five prostate cancer 
TAAs

Phase I-IIa, NCT04382898 Metastatic castration-
resistant prostate cancer 
and newly diagnosed high 
risk localized prostate cancer

Intravenous Terminated

mRNA BNT113: HPV E6 and E7 Phase I-II, NCT04534205 Unresectable recurrent 
or metastatic  HPV16+ HNSCC 
expressing PD-L1

Intravenous Recruiting

mRNA BNT116 Phase I, NCT05142189 Advanced, metastasized, 
and unresectable NSCLC

Intravenous Recruiting

mRNA CLDN6 (claudin 6) Phase I, NCT04503278 CLDN6-positive relapsed 
or refractory advanced solid 
tumors

Intravenous Recruiting
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compared with pembrolizumab monotherapy (22% vs 
40%) in patients with resected IIIB–IV melanoma [146]. 
This combination therapy shows great promise and has 
become the first mRNA vaccine to progress into phase 
3 clinical trials (NCT05933577, NCT06077760). These 
trials underscore the potential of personalized neoanti-
gen mRNA vaccines as effective postsurgical adjuvant 
treatments. Other mRNA-LPX vaccines under clinical 
investigation include BNT112 (five antigens for meta-
static prostate cancer, NCT04382898), BNT113 (HPV16 
E6/E7, NCT04534205), BNT116 (TAAs for NSCLC, 
NCT05142189) and CARVac (Claudin 6 for advanced 
solid tumors, NCT04503278).

Virus‑based cancer vaccines
Virus-based vaccines can be categorized into three main 
types: oncogenic virus vaccines, replication-defective 
viral vector vaccines, and oncolytic viruses (OVs) vac-
cines. Oncogenic virus-based vaccines have several 
forms, including inactivated virus, live attenuated virus, 
viral subunits, and VLPs, which are primarily used in pro-
phylactic settings [9]. Live attenuated viruses are highly 
immunogenic but present risks of virulence reversal and 
disease induction in immunocompromised individuals, 
whereas inactivated viruses are safer but less effective 
in eliciting cellular immune responses [9]. VLPs, com-
posed of self-assembling viral capsid, core, or envelope 
proteins, are recognized for their high immunogenicity 
and safety. Currently approved prophylactic VLP-based 
cancer vaccines on the market include Gardasil, Gardasil 
9, Cervarix, and Cecolin, targeting HPV L1 epitope, and 
Engerix-B, Recombivax HB, Heplisav-B and PreHevbrio, 
targeting HBV [147, 148]. Recent studies  have shown 
the potential of VLP vaccines in treating HER2-posi-
tive breast cancer and melanoma. ES2B-C001, a human 
HER2 vaccine candidate, displayed powerful anti-tumor 
efficacy, achieving a 70% tumor-free rate and complete 
inhibition of lung metastases in mice  HER2+ mammary 
carcinoma model [149]. The prototypic VLPs with high-
density HER2 exposure induced robust anti-HER2 anti-
bodies, and effectively inhibited the growth of  HER2+ 
tumor in mice [150]. Similarly, in melanoma, VLP-based 
vaccines targeting germline epitopes  and neoepitopes 
have demonstrated therapeutic effects in mice [151]. The 
vaccine CMP-001, which does not specifically target an 
antigen but packages a TLR9 agonist, effectively activates 
pDCs, triggering cytokine secretion and systemic  anti-
tumor T cell responses [152]. In situ immunization with 
CMP-001 has shown promising tumor control in preclin-
ical experiment [153]. A phase II clinical trial reported 
that CMP-001 in combination with pembrolizumab was 
well tolerated and achieved 24% ORR in patients with 
advanced melanoma [154].

Viral vectors such as adenovirus (Ad), adeno-associated 
virus, vaccinia virus (VV), measles virus (MV), herpes 
simplex virus (HSV), and poxvirus have the adjuvant-like 
function to induce innate immune responses. Ads are 
widely used in gene therapy and are the most extensively 
tested in clinical trials. Early-generation Ad vectors, engi-
neered with deletion of the E1 and/or E3 region in the 
genome, can accommodate DNA insertion of 4.5–8  kb 
[155]. Ads have extensive tissue tropism, effective gene 
transfect ability, and high safety, as they do not integrate 
into the host genome. However, a major drawback is the 
high prevalence of pre-existing immunity against Ads 
in the population. Both VV and HSV can accommodate 
DNA insertion of up to 40  kb [156]. Difference is that 
VV replicates in the cytoplasm, while HSV replicates 
in the nucleus, posing a higher risk of genomic integra-
tion [156]. One challenge of viral vectors is that they may 
express highly immunogenic epitopes, potentially hinder 
specific CTL responses against targeted tumor antigens 
[157]. Moreover, viral vectors can elicit neutralizing anti-
bodies that impede the repeat use of the same vector, 
which can be addressed by employing different vectors or 
heterologous regimens [158]. Viral vector-based vaccines 
can be divided into replication-defective and replication-
complete viral vector vaccines, the latter also referred to 
as OV vaccines.

Replication‑defective viral vector‑based vaccines
Replication-defective viral vectors are engineered to 
deliver target proteins into the host. TG4010, a modified 
vaccinia Ankara (MVA) strain vaccine encoding MUC1 
and IL-2, significantly improved PFS (5.9 vs 5.1 months) 
and OS (12.6 vs 10.6  months) in advanced NSCLC 
patients when combined with standard chemotherapy 
[159, 160]. Additionally, low baseline level of CD16, 
CD56, CD69 triple-positive lymphocytes was validated as 
a predictive biomarker for clinical outcomes [159]. Nado-
faragene firadenovec, an Ad vaccine delivering IFNA2B 
to bladder epithelium cells, achieved 53.4% CR within 
3  months of the first injection, with 45.5% maintaining 
response at 12 months in a phase III trial [161]. This led 
to its FDA approval for treating Bacille Calmette-Guérin 
(BCG)  -unresponsive non-muscle-invasive bladder can-
cer in 2022 [162]. Trovax, another MVA-based vaccine 
delivering oncofetal antigen 5T4, has shown great poten-
tial in eliciting specific immune responses in several 
cancers [163]. In a randomized trial, Trovax prolonged 
PFS (5.6 vs 2.4  months) and OS (20.0 vs 10.3  months) 
in patients with inoperable metastatic colorectal cancer 
[164].

Novel strategies, including heterologous regimens and 
combined immunizations, have been explored. Studies 
have demonstrated that concurrent administration of 
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multiple viral vaccines was safe and immunogenic [165, 
166]. PROSTVAC-VF, a heterologous prime-boost regi-
men utilizing recombinant vaccinia and fowlpox viruses 
expressing prostate-specific antigen (PSA) alongside 
three T cell costimulatory molecules (B7.1, leukocyte 
function-associated antigen-3, and intercellular adhe-
sion molecule-1) plus GM-CSF, increased three-year 
OS rate (30% vs 17%) and extended median survival by 
8.5 months in a phase II trial in patients with metastatic 
castration-resistant prostate cancer, though without pro-
longed PFS or detectable antibody to PSA [167]. The sub-
sequent phase III trial was halted early due to the absence 
of improvement in OS or event-free survival [168]. Simi-
larly, sequential immunization with chimpanzee adeno-
virus and MVA, both delivering 5T4, induced strong 
immune responses in patients with low- and intermedi-
ate-risk prostate cancer, but its clinical efficacy remains 
uncertain [169]. These findings show that replication-
defective viral vector-based cancer vaccines hold poten-
tial but need continued exploration to optimize their 
effectiveness.

Oncolytic virus‑based vaccines
While replication-defective vaccines offer safety by 
avoiding viral replication, OV vaccines harness the inher-
ent ability to selectively replicate in and destroy tumor 
cells, presenting a more aggressive but potentially more 
effective approach [170]. OVs induce the release of viral 
components and a broad spectrum of tumor antigens, 
triggering robust immune responses and fostering an 
inflammatory TME. To reduce viral pathogenicity and 
enhance tumor targeting, natural viruses are often genet-
ically engineered by deleting non-essential viral genes 
and inserting target genes, such as tumor antigens and 
cytokines. Immunomodulatory factors like GM-CSF, 
IL-2, IL-18, IFN-γ, and TNF-α, either alone or in combi-
nation, have been incorporated into OVs to bolster anti-
tumor immunity [171, 172]. Commonly used vectors in 
clinics include Ad, HSV-1, and VV [172]. To date, four 
OV vaccines have been approved for advanced cancer: 
Rigvir in 2004, H101 in 2005, talimogene laherparepvec 
(T-VEC) in 2015, and DELYTACT in 2021.

Rigvir, an unmodified ECHO-7 enterovirus, was 
approved for melanoma in several European countries, 
with two post-marketing studies showing prolonged 
survival in patients with early-stage melanoma, but it is 
not widely used [173]. H101, an E1B-deleted adenovi-
rus, achieved a 78.8% ORR when combined with chem-
otherapy, compared to 39.6% with chemotherapy alone, 
leading to its approval in China for nasopharyngeal car-
cinoma [174]. T-VEC, an attenuated HSV-1 expressing 
GM-CSF, improved median OS (23.3 vs 18.9  months) 
in patients with unresectable melanoma compared to 

GM-CSF, thus became the first FDA-approved OV vac-
cine in 2015 [175, 176]. The combination of T-VEC with 
chemotherapy achieved a 45.9% pathological CR and 
an estimated 89% 2-year DFS in TNBC patients [177]. 
Worth mentioning, the FDA-approved standard treat-
ment of pembrolizumab plus chemotherapy achieved 
64% pathological CR and 84.5% 3-year event-free sur-
vival rate [178, 179]. Furthermore, the combination of 
T-VEC with ICIs has shown mixed results, necessitating 
the need for further studies on optimal ICI selection and 
refined immune strategies. In a phase II trial of advanced 
melanoma, the combination of T-VEC and ipilimumab 
elicited a higher ORR versus ipilimumab alone (35.7% 
vs 16.0%) [180]. However, combining T-VEC with pem-
brolizumab failed to make clinical improvement in a 
global phase III trial [181]. RP-1, an HSV-1-based OV 
expressing GM-CSF and a fusogenic protein GALV–
GP–R–, increased the extent and immunogenicity of 
tumor cell death, as well as the level of  CD8+ T cells and 
PD-L1 expression in TME [182]. The latest results from 
IGNYTE-3 clinical trial showed that about one-third of 
melanoma patients responded to RP-1 and nivolumab 
combination, with rapid and durable responses, achiev-
ing a median duration of 21.6  months [183, 184]. The 
evolution from T-VEC to RP-1 underscores the potential 
of refining OV vaccines, especially when combined with 
ICIs, for better efficacy.

Other OVs, such as G207 and DELYTACT, have dem-
onstrated efficacy in treating gliomas. G207, a modified 
HSV-1 with deletions in γ34.5 and ICP6, prolonged the 
median OS (12.2 vs 5.6 months) in 12 pediatric patients 
with recurrent or progressive high-grade glioma [185]. 
DELYTACT, a third-generation HSV-1 vaccine developed 
by deleting the α47 gene from parental G207, is approved 
in Japan for malignant glioma and shows potential against 
various solid tumors [186, 187]. Furthermore, OVs armed 
with cytokines, chemokines, and or used in combination 
with other treatments have shown therapeutic promise. 
JX-594, a thymidine kinase gene-inactivated oncolytic 
VV expressing GM-CSF, selectively targets cancer cells 
with EGFR/Ras pathway mutations [188]. Despite being 
safe and immunogenic in clinical trials for primary liver 
cancer and metastatic colorectal cancer, combinations of 
JX-594 with cyclophosphamide (Cy), sorafenib, or ave-
lumab have yet to yielded improved clinical outcomes 
[189–194]. VG161, a novel HSV-1 oncolytic virus encod-
ing IL-12, IL-15, IL-15 receptor alpha subunit isoform 1, 
and a PD-1/PD-L1 blocking peptide, induced robust anti-
tumor effects [195]. VG161 received FDA orphan drug 
designation in 2023, and completed a phase I clinical trial 
in patients with advanced primary liver cancer refractory 
to standard treatment, now undergoing multiple clinical 
Phase II trials [196]. In summary, while OV-based cancer 
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vaccines exhibit significant therapeutic potential, most 
clinical trials remain in early stage (Table 5), underscor-
ing the need to optimize treatment regimens to enhance 
efficacy [172].

Cell‑based cancer vaccines
Tumor cells serve as excellent antigens sources for vac-
cines, utilizing formats such as whole tumor cell (WTC), 
lysates, or components. DC-based vaccines are particu-
larly effective as they directly activate T cells. Both tumor 
cell- and DC-based vaccines have been widely tested 
in clinical trials (Table  6). Additionally, other immune 
cells, such as NK cells, B cells, and T cells, are also being 
explored for their potential in cancer vaccines.

Tumor cell‑based vaccines
Living tumor cells exhibit low immunogenicity due to 
immune evasion mechanisms such as downregulation 
of MHC molecules and secretion of immunosuppressive 
factors, necessitating their inactivation for vaccine pro-
duction. Different manufacturing methods such as irra-
diation, freeze–thaw cycles, hyperthermia, hypothermia, 
and hypochlorous acid, affect vaccine immunogenicity 

differently [197]. Here, we primarily focus on WTC vac-
cines, containing a complete antigen spectrum, which are 
promising to overcome the challenge of HLA restriction 
and reduce the risk of tumor escape.

Approaches to enhance the immunogenicity of WTC 
vaccines include gene modifications, incorporating adju-
vants, and utilizing innovative delivery platforms. BCG 
and immune-stimulating molecules such as IFN, IL, 
and GM-CSF have been utilized as adjuvants. Modify-
ing tumor cells to produce immune stimulators has been 
widely employed, with GVAX being a classic example. 
For instance, Chen et al. engineered living tumor cells to 
secrete IFN-β and GM-CSF, which possessed the ability 
to directly kill tumor cells and improve the TME, along 
with an implemented double kill-switch to prevent sec-
ondary tumor initiation [198]. The efficacy of this thera-
peutic vaccine was confirmed in immunocompetent and 
humanized mice models with primary, recurrent, and 
metastatic cancers [198]. Additionally, Meng et al. devel-
oped a photothermal nanoparticles platform activated 
by near-infrared laser irradiation, enabling on-demand 
release of the WTC vaccine, which exhibited potent anti-
tumor efficacy in six mice models [199].

Table 6 Selected phase II-III clinical trials of cell-based cancer vaccines

PAAD, pancreatic adenocarcinoma; Cy, cyclophosphamide

Platform Vaccine Year, Phase, reference Target cancer, Sample 
number

Route Results

Tumor cells Oncovax: autologous tumor 
cells

2001, phase III [201] Resected stage II/III colon 
cancer /728

Intradermal Recurrence-free interval: 
annual odds reduction 
25 ± 13% compared to pla-
cebo

Tumor cells Belagenpumatucel-L: four 
allogeneic NSCLC cell lines

2015, phase III, 
NCT00676507 [204]

Stage III/IV NSCLC/532 Intradermal No improvement compared 
to placebo

Tumor cells Canvaxin: three alloge-
neic melanoma cell lines 
plus BCG

2017, phase III, 
NCT00052156 [205]

Complete resection of stage 
IV melanoma/496

Intradermal No improvement compared 
to placebo

Tumor cells GVAX, Cy, and CRS-207 2019, phase IIb, 
NCT02004262 [213]

Previously treated meta-
static PAAD/213

Intradermal No improvement compared 
to chemotherapy

GVAX and ipilimumab 2020, phase II, NCT01896869 
[211]

Metastatic PDAC/82 Intradermal No improvement compared 
to chemotherapy

GVAX, Cy, nivolumab 
and urelumab

2023, NCT02451982 [214] Resectable PAAD/40 Intradermal No improvement compared 
to GVAX and Cy

DCs Sipuleucel-T (Provenge) 2010, phase III, 
NCT00065442 [224]

Metastatic castration-resist-
ant prostate cancer/512

Intravenous Reduced 22% death risk 
and enhanced 4.1-month 
median survival compared 
to placebo

DCs DCVAC/Pca: autologous 
DCs exposed to a human 
prostate adenocarcinoma 
cell line

2022, phase III, 
NCT02111577 [234]

Metastatic castration-resist-
ant prostate cancer/1182

Subcutaneous No improvement compared 
to placebo, docetaxel, 
and prednisone

DCs DCVax-L: autologous DCs 
loaded with autologous 
tumor lysate

2023, phase III, 
NCT00045968 [233]

Newly diagnosed and recur-
rent glioblastoma/331

Intradermal Extended OS in new (19.3 vs 
16.5months) and recurrent 
glioblastoma (13.2 vs 7.8 
months) compared to pla-
cebo and temozolomide
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Various WTC vaccines derived from autologous and 
allogeneic sources have been evaluated in clinic. Onco-
VAX, combined with BCG, enhanced recurrence-free 
period and OS in patients who had colon cancer sur-
gery, but these benefits were mainly observed in stage II 
patients, with further testing ongoing (NCT02448173) 
[200, 201]. M-Vax, an autologous melanoma cell vaccine 
mixed with BCG, induced delayed-type hypersensitiv-
ity, which was positively correlated with longer OS [202]. 
The combination of M-vax with IL-12 has entered phase 
III clinical trial (NCT00477906). Gemogenovatucel-
T, modified to encode GM-CSF and suppress furin and 
TGF-β1/2, decreased the recurrence risk in patients with 
stage III/IV BRCA WT ovarian cancer as a maintenance 
treatment compared to placebo [203]. However, Belagen-
pumatucel-L, comprising four TGF-β2-antisense gene-
modified allogeneic NSCLC cell lines, failed to achieve 
improvement as a maintenance therapy [204]. Similarly, 
Canvaxin, made from three allogeneic melanoma cell 
lines, did not improve clinical outcomes as a postsurgi-
cal adjuvant therapy [205]. Additionally, cancer stem and 
stem-like cell-based vaccines are emerging as alternative 
strategies. [206]. For example, AGI-101H, consisting of 
two modified allogeneic cell lines encoding IL-6 linked 
with the soluble IL-6 receptor and transforming into a 
stem-like phenotype, led to longer survival in melanoma 
patients in a phase II clinical trial [207].

GVAX has the ability to induce potent immune 
responses, but its clinical benefits have been limited, 
especially when compared to standard therapies. GVAX 
was shown to elevate the intratumoral ratio of effec-
tor T cell to Treg and stimulate the formation of intra-
tumoral tertiary lymphoid aggregates in patients with 
resected PDAC, which may be associated to longer OS 
[208, 209]. In a phase II trial of advanced PDAC, com-
bining GVAX with ipilimumab enhanced median OS (5.7 
vs 3.6 months) and 12-month OS rate (27% vs 7%) versus 
ipilimumab monotherapy [210]. However, when com-
pared to front-line maintenance chemotherapy, this com-
bination did not show improvement in metastatic PDAC 
[211]. A prime/boost regimen of Cy, GVAX, and CRS207, 
a live-attenuated Listeria monocytogenes-expressing 
mesothelin, extended OS in patients with metastatic pan-
creatic adenocarcinoma [212]. But this regimen failed to 
surpass the efficacy of chemotherapy [213]. As a neoadju-
vant therapy, the combination of Cy, GVAX, nivolumab, 
and urelumab, a CD137 agonist antibody, showed prom-
ise, extending OS to 35.55  months in a small sample, 
which requires further investigation [214].

Furthermore, recent advancements have been made 
in cancer vaccines leveraging immune cells. NK cells, 
known for their direct tumor-lysing capability, displayed 
effective antitumor activity, and when combined with 

TLR agonist, promoted a pro-inflammatory shift of the 
TME [215]. Additionally, autologous B cell and mono-
cyte-based vaccines, transfected with tumor antigens and 
loaded with the NKT cell ligand alpha-galactosyl cera-
mide, have demonstrated immunogenicity and safety in 
clinical trials involving small sample patients with gas-
tric cancer or cervical cancer [216–218]. However, more 
robust data from larger trials are needed to confirm these 
findings.

DC‑based vaccines
Current DCs used in clinical settings are derived from 
 CD14+ peripheral blood monocytes or  CD34+ hemat-
opoietic precursors, cultured with cytokines to differ-
entiate into mature DCs, which are then loaded with 
antigen sources for vaccine production [219, 220]. The 
selection of antigen sources is critical. DC vaccine pulsed 
with hypochlorous acid-oxidized tumor cell lysates 
downregulated suppressive cytokines, improved antigen 
presentation, and prolonged mouse survival, compared 
to those using irradiated or freeze-thawed tumor cell 
lysates. [221]. In patients with advanced recurrent ovar-
ian cancer, this vaccine decreased peripheral Treg cells, 
activated  CD8+ responses against multiple antigens, and 
yielded radiographic lesion regression. [221]. Addition-
ally, DC vaccines loaded with tumor-stressed lysates 
induced higher levels of TAA-specific T cells, Th1-type 
chemokines, and CTLs than irradiation tumor lysates 
[222]. Notably, monocyte-derived DCs are highly adapt-
able cells responding to inflammatory conditions, which 
share some characteristics with bona fide DC subsets but 
also exhibit distinct differences [223]. DC-based vaccines 
have demonstrated effectiveness in both preclinical and 
clinical studies, although the manufacturing process is 
complicated, costly, and time-consuming [219].

Sipuleucel-T (Provenge), derived from autologous 
monocytes, loaded with a recombinant fusion protein 
(PA2024) that comprises prostate antigen, prostatic acid 
phosphatase, and GM-CSF, greatly prolonged the OS of 
men with metastatic castration-resistant prostate cancer 
(mCRPC) in a phase III clinical trial [224]. Ilixadencel, 
intratumorally injected allogeneic DCs, has shown prom-
ising clinical results [225, 226]. A multi-center phase 
II study evaluated the combination of ilixadencel with 
sunitinib in patients with newly diagnosed metastatic 
renal cell carcinoma, with the latest results demonstrat-
ing a higher 42.2% ORR in the ilixadencel group versus 
24.0% in the control group [225]. To date, ilixadencel has 
received FDA orphan drug status for soft tissue sarcoma 
and hepatocellular carcinoma, along with regenerative 
medicine advanced therapy status for kidney cancer. In 
a phase I/II clinical trial, a DC vaccine pulsed with two 
HER2-derived peptides demonstrated immunogenicity 
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when combined with monoclonal antibody and chemo-
therapy, offering a promising approach for HER2-positive 
breast cancer [227].

DC vaccines loaded with tumor cells have been exten-
sively studied. In a phase II clinical trial, autologous DC 
vaccine loaded with tumor cells led to longer median sur-
vival (43.4 vs 20.5  months) and 70%-reduced death risk 
compared to autologous tumor cell vaccine in metastatic 
melanoma [228]. TLPLDC and TLPO, autologous tumor 
lysates, yeast cell wall particle-loaded ex  vivo or in  vivo 
respectively, DC vaccines, improved DFS and OS in pre-
venting the recurrence in resected stage III/IV melanoma 
[229]. Due to TLPO’s advantages in reducing production 
costs and time, a phase III study is planned to evaluate its 
effectiveness in combination with standard therapy [229]. 
Combing tumor cell-loaded DC vaccine with chemother-
apy has shown clinical improvements over chemotherapy 
alone, such as the use of DCVAC/LuCa with carboplatin/
pemetrexed for NSCLC and DCVAC/OvCa with first- or 
second-line chemotherapy for ovarian cancer [230–232]. 
The application of DCVax-L with temozolomide greatly 
improved medium OS in newly diagnosed (19.3 vs 
16.5  months) and recurrent glioblastoma patients (13.2 
vs 7.8 months), and notably enhanced the 5-year survival 
rate in newly diagnosed patients (13.0% vs 5.7%). [233] 
However, DCVAC/PCa combined with docetaxel and 
prednisone did not extend OS in patients with mCRPC 
[234].

DC cancer vaccines loaded with mRNA, exosome, 
and immunomodulator have shown significant prom-
ise. TriMixDC-MEL, autologous DCs electroporated 
with synthetic mRNA encoding MAGE-A3, MAGE-C2, 
tyrosinase, and gp100, was safe and immunogenic [235]. 
The combination of TriMixDC-MEL and ipilimumab 
was evaluated in a phase II trial and showed a 38% ORR 
in patients with pretreated advanced melanoma, out-
performing ipilimumab monotherapy [236]. Tumor 
exosomes were proved to be superior than tumor cell 
lysates, with prolonged persistence and preferential pro-
cessing in the MHC-II-loading compartment [237]. Exo-
some-loaded DC vaccines improved TME and achieved 
significant tumor growth inhibition in mice [237, 238]. 
DEC205 is an endocytosis-mediating receptor on DCs. 
Fusing target-DEC205 single-chain fragments vari-
able to MAGE-A3 was found to enhance the MHC-II-
restricted antigen presentation capability of DCs, along 
with higher T cell responses than RNA-electroporated 
or peptide-pulsed DCs [239]. Flt3 ligand, critical for DCs 
differentiation and maturation, was combined with poly-
ICLC and a fusion protein linking NY-ESO-1 with 3G9 
IgG1 (anti-DEC205), evoking strong and lasting immune 
responses in patients with high-risk melanoma [240]. 
Moreover, personalized neoantigen-pulsed autologous 

DC vaccine has shown its immunogenicity and clinical 
therapeutic benefits in patients with advanced lung can-
cer, presenting a promising alternative treatment [241]. 
Although DC vaccines show considerable potential, their 
high production costs and complex manufacturing pose 
major barriers to widespread application. Nevertheless, 
with the advancements in technology, particularly in the 
antigen sources and immune regulatory targets, DC vac-
cines remain to be an important component of cancer 
immunotherapy.

Neoantigen cancer vaccines
Neoantigen vaccines have emerged as a promising fron-
tier in cancer immunotherapy, leveraging various plat-
forms to target specific tumor mutations. For example, 
Neovax, a long-peptide vaccine targeting up to 20 neoan-
tigens per melanoma patient, achieved a median PFS of 
25 months in six patients and induced specific memory T 
cells persisting for 2–4.5 years, along with a broad T cell 
epitope spectrum [40, 242]. When applied to glioblas-
toma patients, this neoantigen vaccine regimen enhanced 
intratumoral T cell activation, further highlighting its 
potential [243].

The combination of neoantigen vaccines with ICIs has 
been validated in many trials. For instance, two patients 
who received Neovax following disease progression and 
subsequently anti-PD-1 therapy experienced complete 
tumor regression [40]. A personalized neoantigen pep-
tide vaccine NEO-PV-01, combined with nivolumab, 
prolonged PFS in patients with cancers [244]. Moreover, 
a personalized neoantigen-loaded DC vaccine, followed 
by nivolumab, achieved 25  months of complete regres-
sion in a metastatic gastric cancer patient [245]. Another 
heterologous vaccine, using chimpanzee adenovirus and 
saRNA to deliver 20 neoantigens in combination with 
nivolumab and ipilimumab, mounted potent and long-
lasting neoantigen-specific  CD8+ T cell responses in 
patients with advanced metastatic solid tumors. [246].

Peptides and proteins from unconventional regions, 
such as long non-coding RNA, 5′ UTR, and circ-RNA, 
have demonstrated immunogenicity and show prom-
ise as anti-tumor targets [247]. To illustrate, a circ-
RNA-derived protein HER2-103 was associated with 
poor prognosis in TNBC patients but indicated strong 
response to pertuzumab [248]. Similarly, cryptic pep-
tides from noncanonical circ-RNA exhibited high MHC 
affinity, effectively primed naïve T cells, and elicit specific 
 CD8+ T cells, driving tumor control in mice [249].

In addition to personalized vaccines, shared neoan-
tigen vaccines are also under investigation. The vaccine 
ELI-002 2P, incorporating amphiphilic modified KRAS 
G12D and G12R mutant long peptides with CpG oli-
gonucleotides, delayed tumor recurrence via improved 
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targeting of lymph nodes and enhanced immunogenicity 
[250]. SLATE v1, designed to encode 20 shared neoan-
tigens, was well-tolerated and immunogenic in patients 
harboring KRAS mutations [251]. This study also pointed 
the phenomenon of immune dominance when antigens 
are expressed from a common vector, and an advanced 
vaccine iteration, SLATE-KRAS targeting four highly 
prevalent KRAS neoantigens, was developed for further 
evaluation (NCT03953235) [251]. These findings under-
score the powerful potential of neoantigen-based cancer 
vaccines, offering highly specific approaches to target and 
eliminate tumor cells, marking a significant advancement 
for precision medicine.

Mechanisms of resistance to cancer vaccines
The immune system performs the ‘immune surveillance’ 
function to identify and eliminate malignant cells [252]. 
But the interaction between cancer and the immune sys-
tem is complex and dynamic. Schreiber et  al. proposed 

the concept of ‘immunoediting’, containing three envis-
aged stages: elimination, equilibrium, and escape, which 
describes how cancer cells evolve to survive, with those 
possessing survival advantages gradually proliferating 
[253]. Cancer resistance arises from a combination of 
intrinsic and extrinsic mechanisms within the tumor and 
its surrounding microenvironment, involving diverse cel-
lular and non-cellular components, is crucial for tumor 
progression, metastasis, and resistance to therapies 
(Fig. 3).

Tumor intrinsic factors
Tumors inherently modify the expression of cytokines 
and chemokines, shaping their microenvironment and 
impairing immune responses. For example, PDA pro-
duces CXCL1 to recruit immunosuppressive cells, 
reducing T cell infiltration [254]. Tumor-derived colony-
stimulating factor downregulates IFN regulatory fac-
tor 8 in cDC progenitors, inhibiting the development of 

Fig. 3 Mechanisms of tumor resistance to vaccine therapy. Tumors utilize intrinsic resistance mechanisms such as mutations in key signaling 
pathways and defects in antigen presentation machinery, to evade immune control, as well as the downregulation or loss of antigen expression. 
Moreover, the upregulation of immune checkpoints like PD-L1/L2, acquired resistance to IFN and TNF, and secretion of suppressive cytokines, all 
impair T cell functionality and reduce immune-mediated tumor clearance. Tumor cells also exploit extrinsic resistance mechanisms by recruiting 
surrounding cells to establish an immunosuppressive environment. Immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), 
regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and M2-like tumor-associated macrophages (TAMs) work together to solid tumor 
extracellular matrix, promote tumor angiogenesis, secrete suppressive cytokines, and inhibit effector T cell activation, thereby fostering tumor 
growth, metastasis, and immune evasion. TAP, transporter associated with antigen presentation; EMT, epithelial-to-mesenchymal transition; VEGF, 
vascular endothelial growth factor; PGE2, prostaglandin E2; MMPs, matrix metalloproteinases; ARG1, arginase 1; IDO, indoleamine 2,3-dioxygenase; 
ECM, extracellular matrix; PDGF, platelet-derived growth factor; FGF, fibroblast growth factor; CXCL, C-X-C motif chemokine ligand; CCL2, CC 
chemokine ligand 2; NK, natural killer



Page 18 of 30Zhou et al. Journal of Hematology & Oncology           (2025) 18:18 

cDC1s [255]. Metastatic melanoma releases exosomes 
with PD-L1 on the surface to suppress  CD8+ T cell func-
tion [256]. Moreover, tumors can evade immune rec-
ognition through mutations in antigen presentation 
machinery, such as mutations in MHC molecules and 
β2-microglobulin [257–261]. Signaling pathway dys-
regulation fosters T cell exclusion and immune escape. 
Examples include IFN signaling mutation, WNT/β-
catenin activation, and the loss of phosphatase and ten-
sin homolog [262–265]. Furthermore, under immune 
selection pressure, tumors may acquire mutations that 
downregulate highly immunogenic proteins or even lose 
mutant alleles to escape T cell recognition [266].

Tumor extrinsic factors
Over the long-lasting hard fight against cancer, immune 
cells may become exhausted and lose their ability to 
eliminate cancer cells, while some plastic immune cells 
adopt pro-tumor characteristics. The accumulation of 
regulatory T cells (Tregs), myeloid-derived suppressor 
cells (MDSCs), cancer-associated fibroblasts (CAFs), 
pro-tumor N2 neutrophils, and M2-like tumor-associ-
ated macrophages (TAMs) is associated with poor prog-
nosis. These cells collaborate to foster suppressive TME 
by upregulating immune checkpoint (PD-1, CTLA-4), 
secreting immunosuppressive cytokines (IL-6, IL-10, 
TGF-β), inhibiting the function of immune cells, promot-
ing angiogenesis, and solidifying the extracellular matrix, 
which in turn strengthen their capabilities to resist 
immune attack [267–272]. For example, M2-like TAMs 
restrict  CD8+ T cell function through collagen deposi-
tion and metabolic reprogramming within TME [273]. 
CAFs remodel the extracellular matrix, hinder immune 
cell infiltration, and contribute to tumor invasion [274]. 
TGF-β increase pDC-derived IDO and myeloid DCs-
derived CCL22, which recruits Tregs into the TME 
[275]. Immunosuppressive cells also counteract vaccine-
induced responses, as seen in melanoma patient where 
MDSCs and Tregs inhibited anti-tumor T cell function 
after vaccination [276, 277]. Thus, understanding these 
intrinsic and extrinsic resistance mechanisms is vital for 
developing strategies to enhance the effectiveness of can-
cer vaccines.

Combination therapies to overcome limitations
Although cancer vaccines have the potential to improve 
the TME, they often fail to abolish tumors when used 
alone. To address this, researchers have extensively 
explored combining cancer vaccines with other treat-
ments including surgery, chemotherapy, radiotherapy, 
ICIs, ACT, monoclonal antibodies, and small-mole-
cule inhibitors. Importantly, cancer vaccines have been 
identified with the ability to induce epitope spreading, 

broadening the T cell responses and potentially optimiz-
ing efficacy of combination therapies [160, 244, 278]. By 
utilizing strengths of different therapies, combination 
approaches overcome the limitations of single therapy 
and collaborate to offer a multifaceted attack on tumors 
(Fig. 4).

Chemotherapy and radiotherapy can debulk tumors, 
induce immunogenic tumor cell death, increase MHC 
molecules expression, and induce nonsynonymous 
mutations [279]. Under the stress from cytotoxic agents 
and radiation, apoptotic tumor cells release numerous 
DAMPs such as surface-exposed hot shock proteins, cal-
reticulin, secreted adenosine triphosphate, and released 
high mobility group protein B1, which stimulate intensive 
inflammation and promote efficient DC maturation and 
antigen presentation to T cells [280–283]. For instance, 
gemcitabine and Cy can reduce the level of MDSCs, 
Tregs, and TGF-β, and increase the effector T cells to 
Tregs ratio [164, 284]. Carboplatin and paclitaxel have 
been shown to suppress immunosuppressive cells, allow-
ing for an extended immunological window for follow-
ing vaccination, resulting in robust T cell responses and 
improved clinical survival [285, 286]. Radiation therapy 
preferentially targets highly proliferative cells, killing 
cancer cells directly and mediating out-of-field abscopal 
effects through triggered systematic immune responses. 
The released cytosolic DNA activates the cGAS-STING 
signaling pathway, inducing type I IFN production that 
aids anti-tumor activity [287]. However, contradictory 
findings regarding the induction of immunosuppressive 
TME by radiotherapy exist, which may stem from the 
varying sensitivity of tumor compartments to different 
radiation schedules [288]. Hence, future studies should 
explore optimal radiation dose, schedule, and fraction.

The combinations of ICIs and cancer vaccines have 
shown encouraging results [40, 46, 142, 244, 245]. Adding 
nivolumab to GVAX increased T cell infiltration, Th1 to 
Th2 ratio, and Th17 density, which also led to improved 
 CD137+ CTL function and  CD11b+ neutrophil degranu-
lation [289]. The co-therapy of nivolumab and ISA101, an 
HPV-16 SLP vaccine, provoked specific T-cell responses 
and doubled the response rate in patients with incurable 
HPV 16-positive solid tumors compared to nivolumab 
monotherapy [290]. One patient with HPV-associated 
head and neck cancer, who was vaccinated with a DNA 
vaccine expressing HPV E6/E7 protein and IL-2, devel-
oped metastasis but showed rapid and complete tumor 
regression after subsequent anti-PD-1 treatment [291]. 
These findings suggest that cancer vaccines and ICIs 
complement each other to enhance immune responses, 
providing an alternative particularly for those resist-
ant to ICIs. However, the optimizing administration 
schedule of ICIs and vaccines is crucial for maximizing 
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therapeutic efficacy and requires further investigations. 
In a tumor-bearing mice model, administrating PD-1 
blockade before vaccination resulted in suboptimal 
primed dysfunctional PD-1+CD8+ T cells, which was 
reversed by simultaneous PD-1 blockade and vaccination 
[292]. Additionally, combing vaccines with ACT has been 
explored to enhance the therapeutic potential of trans-
ferred T cells, leading to improved anti-tumor responses 
in preclinical studies [293, 294].

Targeted therapies, including monoclonal antibodies 
and small molecule drugs, inhibit tumor growth, normal-
ize tumor vasculature, and regulate immune responses 

by targeting key proteins involved in oncogenesis, T cell 
activation, and signaling pathways. Cetuximab, an EGFR-
blocking monoclonal antibody, fostered immunogenic 
death of tumor cells when combined with chemotherapy 
[295]. Agonist antibodies targeting CD27 and anti-CD40 
boosted cancer vaccine efficacy by activating T cells 
[296, 297]. The addition of urelumab, an anti-CD27 ago-
nist antibody, to GVAX, increased intra-tumoral T cell 
infiltration and improved DFS and OS [214]. Small mol-
ecule inhibitors have been widely tested, and some have 
been approved as adjuvant therapies or first-line options 
for recurrent or metastatic disease [298]. However, 

Fig. 4 Key mechanisms underlying the efficacy of combination therapies. A Inhibitors that target immune checkpoints reactivate exhausted 
T cells, restoring their capacity to initiate immune attacks on cancer cells. Adoptive cell therapies involving chimeric antigen receptor (CAR) T 
cells or engineered T cells directly target specific tumor antigens, enhancing tumor cell destruction. B Targeted therapy: monoclonal antibodies 
and small molecule drugs block or inhibit essential molecules for tumor survival. Monoclonal antibodies can obstruct surface receptors, disrupt 
cell proliferation, or mediate antibody dependent cell mediated cytotoxicity (ADCC). They can also stimulate T cell activation by engaging 
surface antigens. C Irradiated tumor cells undergo cell death, releasing reactive oxygen species (ROS), circulating tumor DNA (ctDNA), and tumor 
antigens. ctDNA activates toll-like receptor (TLR) 7 and TLR9 on pDCs, promoting type I IFN secretion, thereby enhancing immune responses. cDCs 
also process and present antigens to draining lymph nodes, leading to T cell activation and infiltration into tumor sites, known as the “abscopal 
effect.” D Chemotherapy: cytotoxic drugs induce immunogenic cell death, releasing damage-associated molecular patterns to activate DCs 
and trigger specific T cell responses, aided by the secretion of CCL2, which recruits immature DCs to the tumor microenvironment. CTLA-4, 
cytotoxic T lymphocyte antigen-4; cGAS, cyclic GMP-AMP synthase; cGAMP, cyclic GMP-AMP; STING, stimulator of interferon genes; VEGFR, vascular 
endothelial growth factor receptor; PDGFR, platelet-derived growth factor receptor; HMGB1, high mobility group protein B1; ATP, adenosine 
triphosphate; CRT, calreticulin; HSP, hot shock protein
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combinations of cancer vaccines with tyrosine kinase 
inhibitors like sunitinib and sorafenib have yielded mixed 
clinical results [95, 192, 225].

In conclusion, given the variability among different 
tumors and individuals, selecting appropriate combi-
nation therapy tailored to specific tumor and patient 
characteristics is essential for achieving optimal clinical 
outcomes.

Conclusions and prospects
Numerous cancer vaccines have progressed to clini-
cal evaluation, demonstrating the ability to elicit strong 
immune responses. However, despite some early suc-
cesses, the majority have not achieved durable responses 
or significant clinical efficacy in large phase III trials, 
presenting both opportunities and challenges for future 
development. Decades of research have greatly deepened 
our understanding of cancer vaccines, and the design of 
an optimal vaccine remains a delicate process. This pro-
cess requires careful consideration of antigen selection, 
adjuvant incorporation, administration methods, com-
bination with other therapies, and identification of the 
appropriate patient population.

Evidence suggests that higher tumor burdens, simply 
defined as tumor amount, negatively impact the effec-
tiveness of immunotherapy [299]. This can be attributed 
to the immunosuppressive TME in advanced stages, 
which inhibits the immune system’s ability to mount a 
strong and sustained response. This may partially explain 
the limited success of cancer vaccines in patients with 
advanced or unresectable tumors, where the TME poses 
significant barriers to effective treatment.

Neoantigen-based vaccines and mRNA vaccine plat-
forms have gradually moved toward clinical application 
and shown immense potential. Although few neoantigen-
based vaccines have reached phase III trials so far, they 
are advancing rapidly. A key challenge remains the high 
cost of manufacturing personalized vaccines, which lim-
its their widespread application. In terms of combination 
therapies, ICIs have shown great promise, but clinical 
trial outcomes have been mixed, and there is a lack of 
standardized criteria for drug selection.

Advanced technologies, such as single-cell sequenc-
ing and high-resolution imaging, have enabled a deeper 
understanding of TME, providing new insights into the 
interaction between vaccines and cancer cells [2]. These 
tools offer the potential to optimize vaccine design by 
enabling more precise targeting of cancer cells and 
enhancing immune responses. The evaluation of vac-
cine efficacy has primarily focused on adaptive immune 
responses, particularly the activation of antigen-spe-
cific  CD8+ T cells, and TRMs have also gained atten-
tion. However, clinical outcomes remain the definitive 

benchmark of success, emphasizing the need for robust 
and standardized criteria to assess the clinical impact of 
cancer vaccines [300].

As the field continues to advance, numerous innovative 
platforms, adjuvants, delivery systems, and combination 
strategies are under development. Addressing current 
challenges such as the high cost of personalized vaccines 
and optimizing patient-specific treatment protocols will 
be crucial in ensuring that cancer vaccines achieve their 
full potential in clinical settings. We are optimistic that 
these innovations will drive the next generation of can-
cer vaccines, offering transformative benefits to cancer 
patients in the near future.
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