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Abstract 

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. 
It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote 
tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME 
is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling 
is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance 
their motility and invasiveness and promote metastasis and cancer progression. By targeting various components 
of the TME, novel investigational strategies aim to disrupt the TME’s contribution to the EMT, thereby improving 
treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This 
review scrutinizes the key players in the TME and the TME’s contribution to the EMT, emphasizing avenues to thera‑
peutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME’s 
implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation 
along with potential caveats.
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Introduction
Significant development in the field of cancer therapy have 
taken place during the last decade, resulting in increased 
life expectancy. Nevertheless, the efficacy of these strat-
egies often depends on the type of cancer, its genomic/
molecular alterations, and patients [1]. Metastasis is a hall-
mark of cancer and the main contributor to the deaths of 
cancer patients [2, 3]. Hence, metastasis represents the 
final destination of an evolutionary journey, during which 
continuous and intricate interactions between cancer cells 
and their surrounding microenvironment result in altera-
tions that enable these cells to deviate from their originally 
programmed behavior [4, 5]. Even though metastasis is 
responsible for the high mortality and morbidity of can-
cer, its underlying mechanisms are poorly understood. 
Epithelial-mesenchymal transition (EMT) is a biological 
process wherein polarized epithelial cells assume a mes-
enchymal phenotype through reversible changes in gene 
expression and morphology that enhance their migratory 
capacity and contributes to cancer metastasis [6, 7]. EMT 
leads to epithelial cells transitioning into cells with a more 
mesenchymal phenotype [6–9]. While EMT has impor-
tant roles in normal embryonic development, tissue repair, 
and wound healing [10], it is also associated with tumo-
rigenesis, metastasis, stemness, and therapeutic resistance 
[11–14]. The induction of EMT not only enhances motil-
ity and invasion of cancer cells, but also mediates resistance 
to senescence (15] and apoptosis [16]. In addition, EMT 
stimulation increases stem cell-like features, as well as the 
formation of self-renewing tumor-initiating cancer stem 
cells (CSCs) [17–20]. The shift of cells to a more mesenchy-
mal-like phenotype is also critical for tumor cells to invade 
nearby tissues, and subsequently, enter the systemic circu-
lation and metastasize to distant organs [21]. Furthermore, 
the reversal of EMT at the metastatic niche, known as mes-
enchymal-epithelial transition (MET), contributes to met-
astatic colonization of distant organs [22], disseminated 
tumor cell-induced metastases, and re-initiation of tumor 
growth [23–25]. Importantly, while the process of MET is 
not well understood [26, 27], the reversibility of EMT and 
the phenotypic plasticity suggest that EMT is a dynamic 
process controlled by either intrinsic and/or extrinsic sig-
nals. Originally, EMT has been viewed as a simple binary 
model encompassing two extreme phenotypes, EMT (fully 
mesenchymal) and MET (fully epithelial). More recently, 
however, it is being considered a dynamic process with 
intermediate transition states between these two extremes 
[28]. When undergoing EMT in a physiological context, 
e.g., a lineage-labeled mouse model of pancreatic ductal 
adenocarcinoma (PDAC) to study EMT in vivo, carcinoma 
cells can lose their epithelial phenotype through differ-
ent molecular mechanisms associated with distinct modes 
of epithelial marker loss and invasive activity. In states of 

“partial EMT” (pEMT), the cell expresses both epithelial 
and mesenchymal markers to a varying extent [29, 30]. 
Of note, pEMT involves mostly alterations at the pro-
tein level (as opposed to those at the transcriptional/RNA 
level) of cell surface-associated epithelial proteins, such as 
internalization and relocalization to intracellular stores. 
Moreover, while these cells migrate/invade in cell clusters 
rather than singly [28, 30], cells having undergone a “com-
plete EMT” (cEMT) are characterized by transcriptional 
repression of epithelial markers and a single-cell migration 
mode [28, 30]. In PDAC and other cancers, the pEMT and 
cEMT programs are reflected in the various histopatho-
logical subtypes and their diverse clinical behaviors [31]. 
The actual EMT phenotypes are dynamically governed 
to a large extent by extracellular signals from the tumor 
microenvironment (TME) [32–34]. The TME is a complex, 
rich, multicellular, and unique ecosystem surrounding a 
tumor [35–37]. The consistent mutual interaction between 
different components of the TME and tumor cells sup-
port cancer growth and invasion of healthy tissues, which 
correlates with poor prognosis and tumor resistance to 
current treatments [38–40]. Accordingly, this complex bi-
directional crosstalk between tumor cells and the TME has 
been reported to drive cancer growth and metastasis [22, 
41] (Fig.  1). Interestingly, the cells of the TME can exert 
either a suppressive or a supporting role toward the tumor 
[38, 42], depending on the cancer stage and/or cancer site. 
These divergent functions are mainly determined by tumor 
type, education, and ontogeny of the cells present inside 
the neoplasm [42). The TME typically comprises various 
cell types such as stromal cells including cancer-associ-
ated fibroblasts (CAFs) [43–45], mesenchymal stromal 
cells (MSCs) [46, 47], and pericytes [48, 49]; immune cells 
including tumor-associated macrophages (TAMs) (50, 52], 
T-cells (53–56], B-cells [57, 58], natural killer (NK) cells [59, 
60], myeloid-derived suppressor cells (MDSCs) [61, 62], 
tumor-associated neutrophils (TANs) [63, 64], and den-
dritic cells (DCs) [65, 66]; as well as extracellular matrix 
(ECM) [67, 68] and secreted molecules including extracel-
lular vesicles (ECVs) [69, 70], growth factors [71, 72], hor-
mones [71, 73], cytokines [74, 32], and chemokines [74, 
75] (Fig. 2) (Table 1). Besides, the TME includes commu-
nicating lymphatic vascular and blood networks, as well as 
cancer subpopulations present in diverse locations within a 
tumor [76, 50]. Given that EMT can be induced not only by 
signals originating within malignant cells but also by mul-
tiple components within the TME [77], therapeutic strate-
gies aimed at targeting EMT must comprehensively target 
these diverse and potent sources of EMT-inducing cues to 
achieve efficacy. This review thus first seeks to equip read-
ers with essential knowledge of the EMT process and its 
associated signaling pathways. Following this, we explore 
the TME components that have been shown to induce 
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EMT and the mechanisms behind these interactions, aim-
ing to identify key TME cell types for therapeutic targeting. 
Finally, we examine current TME-targeting strategies in 
both pre-clinical and clinical studies, highlighting research 
gaps and challenges faced, and prioritizing critical areas for 
future studies. Together, we hope that this review will facil-
itate the development of more effective and precise EMT-
targeting therapies, ultimately mitigating cancer invasion 
and metastasis.

TME‑induced EMT
In cancer, the TME includes stromal cells secreting sev-
eral cytokines and/or chemokines acting via paracrine 
signaling on nearby tumor cells. These paracrine cel-
lular communication signals can trigger an EMT pro-
gram in tumor cells, encouraging cancer progression and 

metastasis. This section of the review discusses how stro-
mal cells in the TME can contribute to activating EMT.

TME‑mediated signaling pathways activating EMT
The cellular changes that occur during EMT are driven 
by EMT-inducing transcription factors (EMT-TFs), 
which comprise basic helix-loop-helix (bHLH) transcrip-
tion factors twist-related protein 1 (TWIST1) and twist-
related protein 2 (TWIST2), zinc finger E-box binding 
homeobox factors 1 and 2 (ZEB1/2), zinc finger protein 
SNAI2 (Slug), and zinc finger protein SNAI1 (Snail) [78–
80]. Different signaling pathways control the expression 
and activation of these master regulators, which are in 
turn influenced by signals from the TME [11]. One of the 
key pathways is the leukocytes-, stromal cell-, and plate-
let-released pleiotropic cytokine transforming growth 

Fig. 1  Metastasis is responsible for the diffusion of tumor cells to distant regions of the body leading to increased drug resistance, therapy failure, 
and mortality. The plasticity of EMT suggests that metastasis is regulated by extracellular signals from the TME, a complex multicellular and unique 
tumor-surrounding ecosystem, which denotes the non-malignant cells and their released molecules present in the tumor via epigenetic 
modifications in cancer cells. The TME comprises various cell types such as immune cells from the adaptive immune system, immune cells 
from the innate immune system, and stromal cells, as well as blood/lymphatic vascular network, ECM, and secreted molecules; all of which 
communicate to signals modulating EMT. The constant interdependent interaction between cancer cells and their TME, as well as the heterogeneity 
of TME, represent the major contributors toward metastasis, cancer progression, and reduced therapeutic response. TME: Tumor microenvironment; 
ECM: Extracellular matrix. This figure has been created with BioRender.com
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factor-β (TGF-β) [81], whose signaling exerts regulation 
of EMT-TFs through SMAD-dependent/independent 
pathways [82]. Other pathways that regulate the expres-
sion of EMT-TFs include the Wnt/β-catenin pathway [83, 
84], the Notch signaling [85], and various growth factors 
such as epidermal growth factor (EGF) [86], insulin-like 
growth factors 1 (IGF-1) [87], and hepatocyte growth 
factor (HGF) [88].

Hypoxia‑inducible factor 1α (HIF‑1α) signaling induces EMT 
and mediates cellular response to hypoxia
The HIF-1α signaling also induces EMT [89] and medi-
ates cellular response to hypoxia, a characteristic micro-
environment hallmark of solid tumors arising from an 
imbalance between the heightened oxygen requirement 
of rapidly proliferating cells and an inadequate oxygen 
supply in the tumor [90–92]. In fact, extensive cancer 
cell proliferation distances cells from the vasculature, 
causing insufficient blood-carrying oxygen in the local 

environment [93]. This response to low oxygen concen-
tration is primarily regulated by HIF-1α, which acts as 
a master transcriptional regulator and whose stability, 
nuclear localization, and activity are altered by hypoxic 
conditions [90]. HIF-1α mediates EMT through the 
regulation of EMT-TFs and reduction of E-cadherin 
expression [89–94]. HIF-1α binds directly to hypoxia-
responsive elements (HREs) in the Twist proximal pro-
moter in hypopharyngeal and breast cancer cells [95], 
as well as the ZEB1 proximal promoter in colorectal 
cancer (CRC) cells, resulting in increased cell migration 
and invasion [96]. In addition, Choi et  al. (2017) have 
identified a hypoxia-induced deubiquitinating enzyme, 
USP47, which promotes the stabilization of Snail to 
enhance EMT and cancer cell metastasis [89]. Hypoxia 
also shares several inter-related signaling pathways with 
EMT, including the critical EMT-inducing TGF-β path-
way. HIF-1α promotes the TGF-β signaling by upregu-
lating TGF-β1/β2 and phosphorylating Smads [97–99]. 

Fig. 2  TME is composed of different cell types, cell structures, and secreted factors. The TME is populated by heterogeneous cancer cells 
and various cell types including immune cells such as T-cells, B-cells, NK cells, DCs, TAMs, MDSCs, neutrophils, monocytes, and eosinophils; stromal 
cells including CAFs and MSCs; as well as blood and lymphatic vascular networks. CAF: Cancer-associated fibroblast; DC: Dendritic cell; ECM: 
Extracellular matrix; ESP: Eosinophil; MDSC: Myeloid-derived suppressor cells; MSC: Mesenchymal stromal cells; NK cell: Natural killer cell; TAM: 
Tumor-associated macrophages; TAN: Tumor-associated neutrophil; Treg: Regulatory T-cells. These cells secrete ECM components, cytokines, growth 
factors, and ECVs important for signaling among different cell types in the TME. This figure has been created with BioRender.com



Page 5 of 96Glaviano et al. Journal of Hematology & Oncology            (2025) 18:6 	

Table 1  Major components (stromal cells, immune cells, ECM and secreted molecules) of the tumor microenvironment

Major components of the tumor microenvironment

TME component Description R

Stromal cells

CAFs CAFs are a highly heterogeneous cell population in both origin and functionality. Even though the majority of CAFs 
result from the induction and expansion of local tissue-resident fibroblasts, various studies have shown that CAFs origi‑
nate from pericytes, adipocytes, endothelial cells, and bone marrow-derived mesenchymal stem cells. CAFs, which are 
the most abundant stromal cells in the TME, can promote tumorigenic by secreting cytokines and initiate the remodelling 
of the ECM. CAFs can also stimulate angiogenesis, tumor formation and metastasis. Hence CAFs themselves and down‑
stream effectors are potential targets for improving the sensitivity of antitumor therapies. Expression pattern of some CAFs 
surface markers include α-SMA, SPARC, and PDGFβ

43–45

MSCs MSCs are a subset of heterogeneous non-hematopoietic fibroblast-like multipotent progenitor cells with immuno-suppres‑
sive properties. MSCs possess a high capacity for self-renewal while maintaining their multipotency. MSCs can differentiate 
into several types of cells, such as osteoblasts, chondrocytes, myocytes, and adipocytes. MSCs are found in nearly all tissues 
but are mostly located in perivascular niches, playing a remarkable role in tissue repair and regeneration. MSCs are found 
within most tumors and influence the formation and function of the TME. MSCs support cancer growth by differentiating 
into other pro-tumorigenic stromal components, enhancing the EMT, augmenting cancer cell survival, promotion cancer 
metastasis, endorsing angiogenesis, and suppressing the immune response

46–47

Pericytes Pericytes are mural cells located between the endothelial cells of capillaries and the basement membrane, playing a crucial 
role in maintaining vascular function and blood flow. Their secretome, in addition to pro-inflammatory cytokines, angio‑
genic growth factors, and ECM, has strong impact on the formation, stabilization, and remodeling of vasculature. Their 
capacity for differentiation further contributes to vascular remodeling in different manners. Pericytes have several interac‑
tions with different components of the TME, such as composing the pre-metastatic niche, endorsing cancer cells growth, 
enhancing drug resistance through paracrine activity, and activating M2 macrophage polarization

48–49

Immune cells

TAMs Macrophages are myeloid lineage cells of the innate immune system arising from bone marrow-derived monocytic 
progenitor cells that differentiate into tissue macrophages, bone resorbing osteoclasts, and antigen-presenting dendritic 
cells. Macrophages are critical to maintain tissue homeostasis and protection against infectious agents through phagocy‑
tosis, cell engulfment, and clearance of cellular debris. In cancer cells these functions are frequently inhibited and the TAM 
population consists of tissue-resident macrophages as well as monocyte-derived cells, which are recruited from the circula‑
tion to the TME. TAMs are present in high numbers in the TME and exert an immuno-modulatory effect by secreting diverse 
factors such as cytokines and chemokines

50–52

T-Cells T-cells play a central role in the adaptive immune response and present a T-cell receptor (TCR) on their cell surface. T-cells 
produce cytokines to regulate other types of immune cells. Their immune-mediated cell death is exerted by two major 
subtypes: CD4 + helper T-cells, which function by activating memory B cells and cytotoxic T cells, resulting in a larger 
immune response; and CD8 + killer T cells, which are cytotoxic and therefore are able to directly kill cancer cells. Other 
types of T-cells include regulatory T-cells (Tregs), which provide the critical mechanism of tolerance whereby immune 
cells are able to distinguish invading cells from “self”; and γδ T-cells, which regulate immunosuppressive functions of IELs 
and also play roles in development of tolerance

53–56

B-Cells B-cells function in the humoral immunity component of the adaptive immune system and secrete antibody molecules. 
Antigen-activated memory B-cells proliferates and differentiates into an antibody-secreting effector cell called plasma 
cell or plasmablast. B-cells present antigens and secrete cytokines. B-cells maturation occur in the bone marrow. There 
is increasing evidence that tumour-infiltrating B-cells and plasma cells, jointly referred to as tumour-infiltrating B-lympho‑
cytes (TIL-Bs), play a critical synergistic role in cancer control. TIL-Bs endorse anticancer immunity through their antigen 
presentation to T-cells, and their role in assembling and perpetuating immunologically “hot” TMEs involving T-cells, NK cells, 
and myeloid cells

57–58

NK Cells NK cells, which are defined as CD3- CD56 + cells in humans, are cytotoxic lymphocyte belong to the innate immune system 
and protect the host by killing stressed, infected, or transformed cells. NK cells orchestrate anticancer immune responses 
via cellular cross-talk. NK cells are a plastic and heterogenous population allowing them to gain diverse phenotypes 
dependent on the signaling cues or tissue context to which they are exposed. Differently from T-cells, NK cells require 
no tumour-specific recognition and are not limited by MHC inhibition. The widespread anticancer effects and relative 
therapeutic safety of NK cells, which directly detect and destroy cancer cells, make them promising candidates for cancer 
immunotherapy

59–60

MDSCs MDSCs are heterogeneous activated immature cells from the myeloid lineage and are an important component of immu‑
nosuppressive networks. MDSCs can interact with T-cells, NK cells, macrophages, and DCs to regulate their functions. 
MDSCs potently inhibit T-cell activity contributing to the immune escape of cancer. Immature MDSCs with remarkable 
immunosuppressive activity accumulate during tumor development and endorse tumor progression through supporting 
cell survival, invasion, metastases and angiogenesis. High levels of MDSC in the TME correlate with lower survival of patients 
with solid tumors. Targeting MDSCs may be a promising strategy for immunotherapy, modifying the immunosuppressive 
microenvironment and augmenting the efficiency of tumor immunotherapy

61–62
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TME: Tumor microenvironment. R: References. CAFs: Cancer-associated fibroblasts; ECM: Extracellular matrix; MSCs: Mesenchymal stromal cells; TAMs: Tumor-
associated macrophages; NK cells: Natural killer cells; MDSCs: Myeloid-derived suppressor cells; TANs: Tumor associated neutrophils; DCs: Dendritic cells; ECVs: 
Extracellular vesicles; GFs: Growth factors; TIMCs: Tumor-infiltrating myeloid cells; TILs: Tumor-infiltrating lymphocytes

Table 1  (continued)

Major components of the tumor microenvironment

TME component Description R

TANs Neutrophils are myeloid derived white circulating cells in blood and are primarily involved in the human innate immunity 
against pathogens. TANs promote cancer progression and metastasis through communication with other immune cells, 
multiple growth factors, inflammatory factors, and chemokines, which together establish an immunosuppressive TME. 
The function of TANs in tumor has been the subject of contradicting reports pointing toward a dual role played by them 
in cancer progression. Indeed, upon cytokine stimulation, TANs acquire the potentiality to polarize to antitumor (N1) or pro-
tumor (N2) phenotype: N1 TANs are characterized by high levels of an TNFα, ICAM-1, CCL3, and low levels of Arginase 
axis, whereas N2 TANs are defined by upregulation of chemokines CCL2-CCL4, CCL8, CCL12, CCL17, CXCL1, CXCL2, CXCL8 
and CXCL16

63–64

DCs DCs orchestrate anticancer immune responses and are impaired in tumor patients. DCs continuously scan and protect 
the environment for danger signals in an immature state. DCs become activated, mature, and trigger anticancer immune 
responses in presence of tumor antigens and danger signals. Thus, DCs possess the unique capacity to act as messengers 
between the innate and the adaptive immune systems by cross-presenting antigens and priming T-cells. DCs become 
regressed into an immature state, compromising their ability to activate T-cells, resulting in T-cell anergy, Treg recruitment, 
and thus fostering cancer tolerance, in an immunosuppressive tumor environment. Dysfunctional DCs are implicated 
in immune evasion, cancer growth, metastasis initiation, and cancer treatment resistance

65–66

ECM

ECM The ECM is one of the main components of cancer exerting important functions such as modulating the microenviron‑
ment, providing mechanical support, and serving as a source of signaling molecules. The quantity of ECM components 
are primary factors determining tissue stiffness. During carcinogenesis, the interplay between tumor cells and the TME fre‑
quently leads to the stiffness of the ECM, resulting in aberrant mechanotransduction and further malignant transformation. 
In cancer, several components of the ECM are subject to alterations which are mainly due to increased or reduced quantity 
of the ECM components, as well as changes in the function of ECM molecules. These alterations can be induced either indi‑
rectly by TME cells with CAFs being of particular interest in this regard, or directly by the cancer cells

67–68

Secreted Molecules

ECVs ECVs are secreted by all types of cells, are protected by a lipid bilayer, and contain proteins, lipids, and/or RNAs. ECVs play 
a critical role in intercellular communications. ECVs can induce angiogenesis and ECM remodeling, impact on tumor cell 
proliferation, establish pre-metastatic niches, endorse cancer metastasis, and inhibit immune response. ECVs can contribute 
to the crosstalk among tumor, immune, stromal, and endothelial cells to provide TME diversity. ECV components can be 
locally delivered to the TME and/or transferred to distant sites to direct cancer behaviour. Thus, ECVs as carriers possess 
the important capacity to shuttle regulatory molecules between tumor cells and multiple stromal cells, producing signifi‑
cant phenotypic alterations in the TME

69–70

GFs GFs act as cellular signaling factors to regulate numerous processes such as cell growth, function, differentiation, 
and metabolism. GFs play a key role in regulating important processes in healthy cells, and affect tumor growth and pro‑
gression in cancer cells. The primary communication between tumor cells and their microenvironment is through GFs 
and receptors for these molecules. A growth factor binds to its cell-surface receptor and initiates intracellular signal 
cascades that results in the modulation of gene expression. Both epithelial and mesenchymal cells produce growth factor 
into the microenvironment. Hence, abnormal cellular responses to GFs are underly malignant transformation. The most 
common GFs in the TME are EGFs, PDGFs, IGFs, FGFs, VEGFs, and TGF-β

71–72

Hormones Hormones act as cellular signaling factors to regulate several processes such as cell growth, function, differentiation, 
function, and metabolism in healthy cells. Hormones exert their functions by binding to specific receptors on target cells 
to induce a downstream signal transduction pathway that typically activates gene transcription, leading to increased 
expression of target proteins, which can enhance or suppress the aforementioned processes. Hormones also mediate 
the interplay between tumor cells, their interaction with the ECM, and other cells of surrounding tissues. These complex 
interactions remarkably affect tumor growth, tumor progression, and angiogenesis in cancer cells. Hormone-induced 
modulation affects several cell types within the TME, including CAFs and TILs, which interplay with cancer cells

71, 73

Cytokines Cytokines are small proteins important in cell signaling. Cytokines are produced by a broad range of cells and include 
chemokines, interferons, interleukins, lymphokines, and tumour necrosis factors. Cytokines are responsible for the pleio‑
tropic actions in tumor such as growth, EMT, angiogenesis, leukocyte infiltration, and therapy resistance. The TME directly 
affects tumor progression and invasion by synthesizing different cytokines. Several pro-inflammatory cytokines, includ‑
ing IFN-γ, TNFα, TGF-β, and ILs contribute to the initiation, progression, and metastasis in cancer. Cytokines present 
in the TME can have a dual role, since they can show both a pro-inflammatory and anti-inflammatory potential, driving 
infiltration and inflammation, and also endorsing evasion of immune system and pro-tumoral effects

74, 32

Chemokines Chemokines are a family of small cytokines or signaling proteins secreted by cells that activate directional movement 
of leukocytes and other cells. Chemokines are important for biological processes such as morphogenesis, wound heal‑
ing and cancers. Chemokines are responsible for the pleiotropic actions in tumor such as growth, EMT, angiogenesis, 
leukocyte infiltration, and therapy resistance. Chronic inflammation is also an instructive process of tumor progression, 
where chemokines are spatio-temporally secreted by cancerous cells and leukocyte subtypes that trigger cell traffick‑
ing into the TME. Chemokines present in the TME can have a dual role, since they can display both a pro-inflammatory 
and anti-inflammatory potential, driving infiltration and inflammation, and also supporting evasion of immune system 
and pro-tumoral effects

74–75
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Moreover, TGF-β suppresses the expression of PHD2, a 
negative regulator of HIF-1α, thereby impairing the deg-
radation of HIF-1α and increasing its stability to form a 
positive feedback loop [100]. Furthermore, HIF-1α syn-
ergizes with the Notch coactivator MAML1 to stimulate 
the expression of Notch target genes, in turn regulating 
the expression of EMT-TFs Slug and Snail to augment 
the migration and invasion of breast cancer cells [101]. 
In addition, HIF-1α can also promote EMT by regulat-
ing hypoxia-responsive non-coding RNAs (HRNs) [102]. 
One example is the lncRNA-UCA1 that is contained in 
exosomes derived from hypoxic bladder cancer cells, 
endorsing proliferation, migration and invasion of tumor 
cells through EMT induction [103]. Finally, overexpres-
sion of HIF-1α under hypoxic condition also induces 
upregulation of miR-210, leading to an increased expres-
sion of EMT mesenchymal markers and enhanced migra-
tion and invasive capabilities of pancreatic cancer cells 
[104]. The referenced studies reveal the multi-faceted 
direct and indirect roles of a hypoxic TME that can play 
in triggering EMT in cancer cells.

CAF‑induced activation of EMT
The EMT can also be activated by CAFs, the most abun-
dant non-tumor cell type residing in the tumor stroma 
and an important component of the TME [105, 106]. 
While fibroblasts in normal tissues are generally qui-
escent and can be activated to facilitate tissue repair 
and wound healing, CAFs are metabolically active and 
enhance tumor development by promoting cell prolif-
eration, angiogenesis, ECM remodeling and immunosup-
pression [107, 108]. Accordingly, CAFs have been related 
to ECM remodeling and deposition, reciprocal nutrient 
exchange, molecular interactions, and signaling with 
adjacent cells in the TME [109, 110]. Numerous studies 
have also provided evidence that CAFs can induce EMT, 
mainly through their secretome and paracrine signaling 
effects [111–115].

Soluble CAF‑derived factors
The TGF-β is one of the most widely studied cytokines 
released by CAFs with EMT-inducing capabilities [114, 
116]. Breast cancer cells co-cultured with CAF-condi-
tioned medium have shown enhanced migration and 
invasion, reduced E-cadherin expression, and enhanced 
EMT-TFs, vimentin, fibronectin, matrix metalloprotein-
ase 2 (MMP-2), and matrix metalloproteinase 9 (MMP-9) 
expression [117]. This phenotype can be reversed using 
a TGF-β-neutralizing antibody, highlighting the criti-
cal role of TGF-β in CAF-induced EMT. TGF-β1 secre-
tion by CAFs stimulates the expression of the lncRNA 
HOTAIR in breast cancer cells, promoting EMT and 
metastasis [118]. Similarly, Wang et  al. (2019) have 

reported that CAF-induced EMT can be reversed using 
a TGF-β receptor kinase I inhibitor in colon cancer 
cells [119]. TGF-β in CAF-conditioned media induces 
EMT in urinary bladder cancer cells through the regula-
tion of ZEB2, both at the transcriptional level and post-
transcriptional level, by upregulating the expression of 
the lncRNA ZEB2NAT, a natural antisense transcript 
of ZEB2 inducing the translation of the ZEB2 protein 
[120]. Notably, TGF-β signaling determines regulation 
of EMT-TFs through SMAD-dependent and SMAD-
independent pathways [82]. The CAF-secreted factor 
pro-inflammatory cytokine interleukin 6 (IL-6), which 
induces JAK2/STAT3 pathway activation-mediated EMT 
in lung [121], hepatocellular [122], and bladder cancer 
[123] cells, can also enhance TGF-β signaling and TGF-
β-induced EMT by increasing SMAD2 phosphorylation 
and membrane localization of TGF-β type I receptor 
[124]. Thus, the cross-talk between IL-6 and TGF-β 
appears to form a vicious cycle that augments malignant 
features such as EMT, invasion, metastasis and chemore-
sistance [125]. Though TGF-β is a notorious major CAF-
released cytokine with high EMT-inducing capability, its 
therapeutic blocking in the clinic still remains a challenge 
due to its dual role in cancer, acting as early-stage tumor 
suppressor and late-stage tumor promoter [126–129]. 
Moreover, CAFs also induce EMT through the secre-
tion of other growth factors. For instance, higher levels 
of EGF, hepatocyte growth factor (HGF), and fibroblast 
growth factor 2 (FGF-2) in CAF-derived conditioned 
medium, which induces EMT in endometrial cancer cells 
and lung metastasis in vivo [130]. The CAF-derived HGF 
induces interleukin 6 receptor (IL-6R) expression and 
thus enhances IL-6 signaling in gastric cancer cells, while 
CAF-derived IL-6 increases the expression of the HGF 
receptor c-Met in gastric cancer cells, demonstrating 
the complicated crosstalk and signaling loops between 
CAFs and tumor cells [131]. Besides, the CAF-induced 
fibroblast growth factor 1 (FGF-1) upregulates Snail 
and MMP-3 expression while activating the MEK/ERK 
pathway to induce EMT in ovarian cancer cells [132]. 
CAF-secreted periostin (POSTN) promotes cancer pro-
gression and drug resistance in non-small cell lung can-
cer (NSCLC) by enhancing cell proliferation, migration, 
and EMT via ERK pathway activation [133]. In pancre-
atic cancer, CAF-mediated EMT regulation involves the 
hedgehog signaling pathway, and inhibiting the hedgehog 
signaling in these CAFs reverses EMT and reduce the 
migratory and invasive capacities of cancer cells [134].

CAFs in ECM remodeling
Under normal physiological conditions, the activated 
fibroblasts are responsible for producing a number of 
ECM components and ECM-remodeling enzymes to 
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maintain ECM homeostasis and respond to tissue injury 
as part of the wound healing process [135–138]. Impor-
tantly, CAFs are directly involved in synthesizing ECM 
components [139], including collagens, fibronectin and 
proteoglycans, thereby contributing to increased matrix 
stiffening [111]. Interestingly, the matrix stiffening pro-
motes EMT through various mechano-transduction 
pathways that respond to environmental signals, such 
as the Hippo pathway and ROCK signaling [140–143]. 
CAFs also mediate ECM remodeling by producing the 
enzymes lysyl oxidases (LOX), which induces collagen 
cross-linking resulting in matrix stiffening and cancer 
progression [144], as well as matrix metalloproteinases 
(MMPs), which degrade the ECM and facilitate cancer 
cell invasion [145]. Thus, CAFs respond to ECM stiff-
ness in a LOX/MMP-dependent manner [146], to further 
fine-tuning the interactions between CAFs and the ECM 
[135]. Investigations of the interplay between CAFs and 
the immune microenvironment has revealing how CAFs 
participate in ECM remodeling and influence the effec-
tiveness of immunotherapy  [105]. Studies have shown 
that EMT is associated with epigenetic alterations in 
genes involved in ECM remodeling, including ADAM19, 
a gene coding for a protein involved in ECM degradation 
[147]. Recent advancements in biomimetic culture sys-
tems that utilize 3D manufacturing and novel material 
technologies that mimic the mechanical properties of the 
ECM are providing more physiologically relevant models 
for studying cancer cell behavior and EMT [148].

CAFs are a heterogeneous population within the TME
The heterogeneity of CAFs can be linked to the origin 
of the precursor cells, as well as their phenotypic and 
functional diversity. The main subsets of CAFs are: 1) 
myofibroblast-like CAFs (myCAFs), marked by SMAhigh, 
IL6low, Ly6cneg, and MHCII−, 2) inflammatory CAFs 
(iCAFs), marked via SMAlow, ILhigh, Ly6c+, and MHCII−, 
and 3) antigen-presenting CAFs (apCAFs), uniquely 
marked by MHCII+, which have been mainly studied in 
pancreatic cancer. Indeed, myCAFs and iCAFs were first 
identified via PDAC organoids and murine stellate cells 
[149] followed by validation in pancreatic cancer patients 
[150]. All three populations exhibit distinct biological 
features that in turn contribute differently to cancer pro-
gression. 1) myCAFs present myofibroblastic features 
and are activated by direct contact with neoplastic cells, 
which ultimately places them adjacent to tumor cells 
[149]. They tend to have both a pro- and anti-tumor role 
depending on the stage of tumor and the other factors 
within the TME [151]. Specifically, they can contribute 
to ECM remodeling. 2) iCAFs are induced by secreted 
factors from cancer cells i.e. interleukin-1α (IL-1α) and 
tumor necrosis factor alpha (TNF-α). They are generally 

considered tumor-promoting via inflammatory secretion 
of IL6, interleukin 11 (IL-11), leukaemia inhibitory fac-
tor (LIF), and several chemokines [152], which contrib-
utes to proliferation, metastases, and chemoresistance 
of tumor cells [153]. Finally, 3) apCAFs can directly edu-
cate T-cells via major histocompatibility complex class II 
(MHC-II). Specifically, they support antigen presentation 
and induction of regulatory T-cells (Tregs), making them 
a contributor to the immunosuppressive axis of solid 
tumors [154, 155]. However, this may be solid tumor 
dependent as new studies in lung tumors suggest that 
apCAFs help direct anti-tumor T-cell immunity [156]. Of 
note, the plasticity of these populations is varying within 
different solid tumors, and more focused single cell and 
spatial transcriptomic and biologic studies will generate 
a more comprehensive roadmap of intratumoral CAFs. 
One example of focused transcriptomic differences of 
these three subsets of CAFs has been demonstrated in 
robust single cell analysis of pancreatic cancer [157].

ECM‑induced activation of EMT
The ECM is a complex network of hydrated macromo-
lecular proteins, proteoglycans, glycoproteins, elastin, 
fibronectin, and sugars that not only provide structural 
support, but also regulate various cell functions, includ-
ing cell adhesion, migration and differentiation [158, 
159]. Consequently, the interactions between the ECM 
components and tumor cells play a crucial role in cancer 
progression [160] and contribute to modifying numer-
ous cancer cell functions, including EMT activation [161, 
162].

Matrix stiffness
Solid tumors in multiple cancer types, including breast, 
liver, pancreatic, and lung cancer, have been shown 
to be stiffer than normal or adjacent tissues [163]. 
The main causes for this are increased matrix deposi-
tion, contraction, and cross-linking, which can lead 
to stimulation of intracellular signaling pathways that 
promote cancer cell survival and tumor growth [142, 
163]. Increased secretion of stiffness-promoting matrix 
components such as collagen and fibronectin by myofi-
broblast-like CAFs and cancer cells themselves have 
been reported, while overexpression of the LOX fam-
ily proteins by cancer cells can also lead to increased 
collagen cross-linking and further stiffening of tumor 
tissue [163]. In particular, the YAP and TAZ transcrip-
tion factors are known to be regulated by matrix stiff-
ness, as well as by changes in the actin cytoskeleton and 
cell shape, which leads to an increase in YAP nuclear 
localization and activity [142–165]. Aberrant activa-
tion of YAP/TAZ induces EMT in triple-negative breast 
cancer (TNBC) and it can be inhibited with luteolin, 
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which triggers degradation of the YAP/TAZ proteins 
[166]. By culturing pancreatic cancer cell lines on pol-
yacrylamide gels of varying stiffness, Rice et  al. (2017) 
demonstrated that stiffer substrata stimulate increased 
vimentin expression, nuclear localization of β-catenin 
and YAP/TAZ, and cell shape changes associated with 
a mesenchymal-phenotype [142]. Moreover, substra-
tum stiffness was also found to induce chemoresistance 
of pancreatic cells to paclitaxel but not to gemcitabine. 
The EMT-inducing TFs ZEB1 and Snail/Slug have 
been shown to bind directly to YAP or form complexes 
with YAP/TAZ, respectively, regulating the transcrip-
tion of downstream target genes [167, 168]. It has also 
been reported that high matrix stiffness promotes the 
nuclear translocation of TWIST1 by releasing it from 
its cytoplasmic binding partner, G3BP2, thereby driv-
ing EMT and promoting tumor invasion in breast 
cancer cells [141]. Another interesting mechanism by 
which matrix stiffness can impact EMT is by modulat-
ing a TGF-β1 response. Leight et al. (2012) found that 
decreasing the rigidity of polyacrylamide gels promotes 
apoptosis in normal mammary gland cells and kidney 
epithelial cells in response to TGF-β1 by inhibiting 
phosphatidylinositol 3-kinase (PI3K)/AKT activity. In 
contrast. increased rigidity led to increased expression 
of mesenchymal markers and EMT-TFs [169]. Another 
study similarly found that in TGF-β1-treated mammary 
epithelial cells, stiff matrices promote EMT while soft 
matrices promote apoptosis. This phenotypic switch 
is mediated by integrin-linked kinase (ILK) [168, 170]. 
Importantly, matrix stiffness not only promotes EMT, 
but also regulates other aspects of cancer, including 
initiation, proliferation, migration, stemness, and drug 
resistance [163]. However, these areas will not be dis-
cussed in detail as they are beyond the scope of this 
review. One important consideration for studies inves-
tigating matrix stiffness is that the observed effects may 
vary depending on whether a 2-dimensional (2D) or 
3-dimensional (3D) culture model is used. For exam-
ple, while multiple studies have demonstrated that cells 
grown on a stiff 2D matrix migrate more actively than 
those on a soft 2D matrix [171–173], 3D matrices with 
higher stiffness increase fibronectin deposition around 
tumor spheroids and restrain tumor cell invasion [174]. 
Additionally, one study showed that a stiff 2D matrix 
induces resistance to sorafenib and lapatinib in breast 
cancer cells, while this drug resistance is reduced in a 
stiff 3D matrix [175, 163]. These findings highlight the 
importance of using culture models that better mimic 
the in  vivo conditions of tumor tissues. Such models 
are crucial for a complete understanding of the roles of 
the ECM in cancer progression [164].

ECM components and their contributions to EMT
Collagen  Collagens are one of the most abundant struc-
tural proteins in the ECM and their increased deposition is 
the most common ECM alteration in cancer [176]. While 
the increased density and enzymatic cross-linking of col-
lagens can promote EMT via matrix stiffening, EMT can 
also be induced by collagen through other mechanisms. 
Culturing pancreatic cancer cell lines on collagen type I- 
and type-III, but not on fibronectin or collagen type IV, led 
to a reduction in E-cadherin expression, decreased cell–
cell adhesion, and increased proliferation and migration 
of cells in a Src-kinase-dependent manner [177]. Collagen 
I was also shown to disrupt the E-cadherin adhesion com-
plex in pancreatic cancer cells by activating focal adhesion 
kinase (FAK) and enhancing β-catenin phosphorylation 
[178]. Shintani et al. (2008) demonstrated that collagen I 
promotes EMT in NSCLC cell lines by activating auto-
crine TGF-β3 signaling. Indeed, in highly fibrotic cancers 
like NSCLC, ECM molecules such as collagen triggered 
signals that endorse EMT. Collagen I-induced EMT in 
NSCLC cell lines was prevented by TGF-β3 signaling. 
Interestingly, collagen I-mediated EMT was impeded by 
PI3K and ERK inhibitors, which promoted transcription 
of TGF-β3 mRNA in these cells, suggesting that collagen 
I determined EMT in NSCLC cells by inducing autocrine 
TGF-β3 signaling [179] (Table 2). Similarly, PI3KCA was 
found to be a mediator of collagen I-induced down-reg-
ulation of E-cadherin in ovarian and prostate cancer cell 
lines [180]. In another study, the interaction of collagen I 
fibrils with α2β1 integrin caused ILK-induced phospho-
rylation of IκB, leading to subsequent release and nuclear 
translocation of active NF-κB, which in turn increased the 
expression of EMT-promoting Snail and LEF-1 transcrip-
tion factors. ILK also determined inhibitory phosphoryla-
tion of GSK-3β, a kinase that hinders functional activa-
tion of both Snail and LEF-1. These transcription factors 
altered the expression of epithelial and mesenchymal 
markers to induce EMT, and promoted cell migration. 
These results indicate the mechanisms whereby collagen I 
triggers EMT, and serve as guidance to identify potential 
therapeutic targets for blocking this transition in cancer 
[181] (Table  2). Together, these data demonstrate that 
collagens, especially collagen I, are potent EMT-inducers 
which can promote EMT via multiple mechanisms and 
signaling pathways.

Laminins  Laminins are a large group (at least 16 mem-
bers) of secreted heterotrimeric glycoproteins that, 
together with collagen IV, are the key constituents of 
basement membranes which provide structural support 
to various tissues and are required for cell polarization, 
adhesion, and migration, especially during development 
[67–184]. In cancer, laminins can activate multiple sig-
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nal transduction pathways by interacting with integrin 
and non-integrin receptors on cancer cells, promot-
ing tumor invasion and metastasis [185]. Their roles in 

EMT have also been reported. For example, laminin γ2 
(LAMC2) promoted migration and invasion of lung ade-
nocarcinoma cells in an integrin β1- and ZEB1-depend-

Table 2  Major TME components (exosomes, CAFs, TANs, and TAMs) regulating different EMT-related signaling networks in several 
cancer types

The ECM regulates EMT-related signaling networks including Collagen I/PI3K/ERK/TGF-β3 in NSCLC, Collagen I/α2β1 integrin/ILK/NF-κB/EMT in pancreatic cancer 
and CRC, Collagen XVII/laminin-5/FAK/AKT/GSK3β/EMT in lung cancer, Fibronectin/Src/ERK/MAPK/EMT in breast cancer, Hyaluronan/CD44/LOX/Twist/EMT in breast 
cancer, Tenascin C/SRC/FAK/EMT in breast cancer, and Tenascin C/PI3K/AKT/mTOR/EMT in nasopharyngeal cancer; TANs regulate EMT-related signaling networks such 
as IL-17a/JAK2/STAT3 in gastric cancer; TAMs regulate EMT-related signaling networks including CCL5/β-catenin/STAT3 in prostate cancer; the exosomes regulate 
EMT-related signaling networks such as miR-224-5p/AR/EMT in NSCLC; and CAFs regulate EMT-related signaling networks including miR-92a-3p/Wnt/β-catenin/EMT 
and IL-6/STAT3/LRG1 in CRC, miR-181d-5p/CDX2/HOXA5 in breast cancer, miR-34a-5p/AXL/EMT in oral cancer, and HMGB1/NF-κB/EMT in NSCLC. R: References. NSCLC: 
Non-Small Cell Lung Cancer; CRC: Colorectal Cancer; NPC: Nasopharyngeal cancer

Major TME components regulating different EMT-related signalings in several cancers

Signaling network Cancer type Remarks R

ECM

Collagen I/PI3K/ERK/TGF-β3 NSCLC Collagen I induces EMT in NSCLC cell lines by activating TGF-β3, which 
can be prevented using inhibitors of PI3K and ERK

[179]

Collagen I/α2β1 integrin/ILK/NF-κB/EMT Pancreatic cancer, CRC​ Cells grown on collagen I show ILK-induced phosphorylation of IκB, 
leading to increased NF-κB transcription and EMT induction

[181]

Collagen XVII/laminin-5/FAK/AKT/GSK3β/EMT Lung cancer Col XVII induced EMT via stabilization of laminin-5 and upregulation 
of Snail expression via the FAK/AKT/GSK3-β pathway

[188]

Fibronectin/Src/ERK/MAPK/EMT Breast cancer Fibronectin-induced EMT depends on Src kinase and ERK/MAP kinase 
signaling in mammary epithelial cells

[194]

Hyaluronan/CD44/LOX/Twist/EMT Breast cancer Extracellular hyaluronan causes nuclear translocation of CD44 which 
triggers LOX transcription, which in turn stimulates Twist transcription

[204]

Tenascin C/SRC/FAK/EMT Breast cancer TN-C addition to medium of MCF-7 breast cancer cells induces EMT-like 
changes associated with FAK phosphorylation by SRC

[213]

Tenascin C/PI3K/AKT/mTOR/EMT NPC TN-C promote nasopharyngeal cancer cell proliferation and EMT 
via activation of the mTOR signaling pathway

[215]

TANs

IL-17a/JAK2/STAT3 Gastric cancer TANs secrete IL-17a which stimulates JAK2/STAT3 axis in triggering EMT 
and increasing metastasis of cancer cells

[248]

TAMs

CCL5/β-catenin/STAT3 Prostate cancer TAMs secrete CCL5 to induce β-catenin/STAT3 axis, leading to EMT 
and enhanced metastasis of tumor cells

[280]

Exosomes

miR-224-5p/AR/EMT NSCLC Exosomal miR-224-5p shows overexpression in NSCLC and promotes 
migration and invasion. miR-224-5p suppresses androgen receptor (AR) 
signaling to induce EMT mechanism, resulting in an increase in cancer 
metastasis

[359]

CAFs

miR-92a-3p/Wnt/β-catenin/EMT CRC​ CAFs secrete exosomes to increase miR-92a-3p expression, leading 
to activation of Wnt signaling and subsequent induction of EMT to pro‑
mote metastasis of cancer cells

[354]

miR-181d-5p/CDX2/HOXA5 Breast cancer CAFs secrete exosomes containing miR-181d-5p which downregulates 
CDX2 and HOXA5, leading to subsequent EMT induction and increased 
metastasis of cancer cells

[360]

miR-34a-5p/AXL/EMT Oral cancer CAFs secrete exosomes containing miR-34a-5p to reduce AXL expres‑
sion. Subsequent induction of AKT/GSK-3β/β-catenin/Snail signaling 
cascade stimulates EMT and promotes metastasis of cancer cells

[334]

IL-6/STAT3/LRG1 CRC​ CAFs secrete IL-6 to induce STAT3 signaling, resulting in upregulation 
of LRG1 and increased metastasis of tumor cells through EMT induction

[361]

HMGB1/ NF-κB/EMT NSCLC CAFs secrete HMGB1 via autophagy to induce NF-κB signaling, leading 
to EMT induction and increased metastasis of cancer cells

[362]

* Breast cancer CAF-educated monocytes exhibit strong immune suppression 
and enhance the motility/invasion of cancer cells in addition to increas‑
ing the expressions of EMT-related genes

[363]
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ent manner. While LAMC2 knockdown in mice attenu-
ated metastasis, elevated LAMC2 levels in patients with 
lung adenocarcinomas was associated with a significantly 
higher risk of recurrence or death [186]. In hepatocellu-
lar carcinoma (HCC) cells incubation with laminin-5 in 
media led to upregulated levels of Snail and Slug, while 
E-cadherin was downregulated. However, both laminin 5 
and TGF-β1 were required to cooperatively stimulate the 
complete EMT process in “non-invasive” HCC cells. This 
effect was reversed by anti-α3 but not by anti-α6 integrin 
blocking antibody [187]. Another study, using microarray 
analysis to identify candidate genes responsible for EMT 
in spheroid/monolayer cultures of lung cancer cells, also 
demonstrated the EMT-inducing role of laminin 5 in lung 
CSCs. An increased expression of several adhesion mol-
ecules in CSCs was found. The adhesion molecule colla-
gen XVII was required for maintenance of EMT pheno-
types in lung CSCs, and stabilized laminin-5 to activate 
the FAK/AKT/GSK3β signaling pathway, leading to sup-
pression of Snail ubiquitination-degradation. Accord-
ingly, patients undergoing surgical resection for lung can-
cer, and displaying overexpression of both collagen XVII 
and laminin-5, showed the worst prognosis of all expres-
sion types. Besides, suppression of the collagen XVII/
laminin-5 signaling axis decreased the EMT phenotypes 
of lung CSCs in vitro and reduced the potential of lung 
metastasis in vivo. This study suggests that targeting col-
lagen XVII and laminin-5 may be a valuable therapeutic 
strategy for treating lung cancer patients [188] (Table 2). 
Interestingly, another study examined the effects of 
laminin-332 and laminin-411 on EMT in three CRC cell 
lines (HT-29, HCT-116, and RKO). Different effects on 
the expression of laminin α4 chain (LAMA4), SNAI1, 
and epithelial marker genes were observed for each cell 
line, suggesting that the contribution of laminin to EMT 
could also depend on the initial characteristics of the cells 
[184]. Lastly, the EMT itself can also affect the expression 
of laminins, and has been shown to induce a switch from 
laminin-511 to laminin-411 in oral squamous carcinoma 
cells. This switch could be attributed to a direct control by 
Snail. While cells could adhere strongly to laminin-511, 
adhesion to laminin-411 was minimal and could poten-
tially be exploited by tumor cells to facilitate their inva-
sion [189]. Given the critical roles laminins play in the 
EMT and cancer cell metastasis, they could be attractive 
targets for cancer therapeutics. One example is the anti-
body for laminin receptor precursor (LRP), IgG1-iS18, 
which significantly reduced the adhesion of various types 
of cancer cells (e.g. pancreatic, colorectal, melanoma) to 
laminins and blocked their invasion in vitro [190].

Fibronectin  Fibronectin, though lower in abundance, is 
a large glycoprotein molecule that has diverse functions 

in the ECM [67]. It can interact with other ECM com-
ponents and cell surface receptors including integrins, 
inducing profound effects on tumor cell proliferation, 
angiogenesis, EMT, invasion and metastasis [191–193]. In 
the mammary gland, the stromal ECM undergoes remark-
able changes during development and in carcinogenesis. 
In fact, normal breast tissue is devoid of fibronectin, 
whereas high fibronectin levels are present in the stroma 
of breast cancers. During EMT, epithelial cell adhesion 
switches from cell–cell contacts to cell-ECM interactions, 
augmenting the probability that fibronectin can promote 
this transition. In a study, MCF-10A mammary epithelial 
cells exposed to exogenous fibronectin underwent EMT, 
and upregulated various EMT markers (e.g. fibronectin, 
Snail, N-cadherin, vimentin, MMP2) via the activation of 
the ERK/mitogen-activated protein kinase (MAPK) sign-
aling axis. Fibronectin initiated EMT under serum-free 
conditions, and this response was partially reversed by a 
TGF-β-neutralizing antibody, suggesting that fibronectin 
increases the effect of endogenous TGFβ. These results 
showed that cells interacting with fibronectin are primed 
to respond to TGFβ. The ability of fibronectin to pro-
mote EMT displayed an active role for the stromal ECM 
in this process, supporting the notion that the enhanced 
levels of fibronectin detected in breast cancers contribute 
to facilitating carcinogenesis [194] (Table  2). Increased 
levels of fibronectin, which induces upregulation of Slug 
and promotes lung metastasis, is also found in renal cell 
carcinoma (RCC) and soft tissue sarcoma (STS) [195]. 
Breast cancer cells grown in the presence of fibronectin 
can potently induce EMT and upregulate N-cadherin 
as well as vimentin through the activation of FAK upon 
fibronectin binding to integrin receptors, promoting cell 
migration and invasion [196]. Interestingly, several mall-
molecule inhibitors which block the ATP binding site 
of FAK have shown promising results in inhibiting cell 
migration and metastasis in vivo [197]. The FAK inhibi-
tor PF-00562271 has already completed phase 1 trial, sup-
porting further study into FAK as a promising therapeutic 
target [198, 199].

Hyaluronan  Hyaluronan, a linear polysaccharide, is 
another key component of the ECM which plays a potent 
role in EMT induction [200–202]. Overexpression of 
hyaluronan synthase-3 (HAS3) in epithelial lung cancer 
cells leads to an EMT phenotype, increased invasion, and 
greater activity of MMP-2 and MMP-9 [203]. El-Haibi 
et  al. (2012) showed that bone marrow-derived human 
MSCs stimulate de novo generation of LOX from human 
breast carcinoma cells, which was sufficient to augment 
the metastasis of weakened metastatic tumor cells to the 
bones and lungs. LOX was found to be an important com-
ponent of the CD44-Twist signaling pathway, in which 
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extracellular hyaluronan led to nuclear translocation of 
CD44 in tumor cells, thereby promoting LOX transcrip-
tion by associating with its promoter. In turn, enzymati-
cally active LOX triggered Twist transcription, which 
mediated the MSC-induced EMT of carcinoma cells. 
Though promotion of EMT in breast cancer cells was 
tightly related to the production of CSCs, LOX did not 
contribute to the capability of MSCs to endorse CSC for-
mation in the carcinoma cell populations [204] (Table 2]. 
Additionally, TGF-β induces EMT via HAS2 upregulation 
and knockdown of HAS2 inhibits TGF-β-induced EMT 
by 50% [205], suggesting the important role of hyaluro-
nan production in EMT. Interestingly, 4-MU, an inhibi-
tor of hyaluronan synthesis clinically approved to treat 
biliary spasms, has been reported to inhibit growth, 
migration and metastasis of pancreatic ductal adenocar-
cinoma [206, 207], as well as invasiveness of lung cancer 
[208] in vitro/vivo. While further clinical results are still 
required to determine its efficacy for cancer treatment, 
these findings suggest the potential for 4-MU as a novel 
therapeutic agent for cancer.

Tenascins  Tenascins (TNs) are a family of large glyco-
proteins composed of four members, tenascin (TN)-C, -R, 
-X, and -W [209]. TN-C, in particular, has been reported 
in multiple studies to display pro-tumoral effects by 
promoting cell proliferation, EMT, migration, and inva-
siveness [210]. While TN-C is expressed at low levels in 
normal adult tissues, it was found to be expressed abun-
dantly in the tumor stroma of almost all analyzed cancer 
types [211]. In breast cancers, TN-C expression assessed 
using immunohistochemistry (IHC) significantly associ-
ated with vimentin gene expression and correlated with 
higher tumor grade and negative estrogen receptor (ER) 
status [212]. TN-C contribution to the EMT was evident 
in experiments whereby the addition of TN-C to the 
medium induced the EMT phenotype in breast cancer 
cells. This process was mediated by the binding of tenas-
cin to αvβ6 and αvβ1 integrins, triggering SRC-induced 
FAK phosphorylation, thereby leading to the loss of cell–
cell adhesion and enhanced cell migration. Indeed, the 
EMT phenotype was related to SRC activation through 
phosphorylation at Y418 and phosphorylation of FAK at 
Y861 and Y925 of SRC substrate sites. These proteins co-
localized with αv integrin-positive adhesion plaques. A 
neutralizing antibody against αv or a SRC kinase inhibi-
tor blocked EMT. Thus, TN-C was able to promote EMT-
like change exhibiting loss of intercellular adhesion and 
increased migration in breast cancer cells through SRC-
mediated FAK phosphorylation [213] (Table 2). Tenascin 
is also a key driver of CRC invasiveness. Gene expression 
microarrays performed in 86 laser micro-dissected CRC 
tissues revealed the enrichment of genes related to EMT 

and TGF-β signaling in samples with high TN-C expres-
sion. Moreover, high TN-C expression significantly cor-
related with higher rates of recurrence in CRC patients 
[214]. In a recent study, TN-C gene transcription/expres-
sion was found to be high in nasopharyngeal carcinoma 
tissues in comparison to normal tissues. TN-C knock-
down inhibited nasopharyngeal carcinoma cell prolifera-
tion, migration, and invasion. Besides, TN-C knockdown 
suppressed cancer growth in mice. Importantly, TN-C 
knockdown inhibited EMT and reduced activity of the 
PI3K/AKT/mTOR pathway in nasopharyngeal carcinoma 
cells. These results suggest that TN-C functions as an 
oncogene, thereby endorsing cell proliferation, promot-
ing EMT, and increasing activity of the PI3K/AKT/mTOR 
signaling pathway in nasopharyngeal carcinoma cells 
[215] (Table 2). Finally, tenascins were also shown to asso-
ciate via their FBG-like domains with small latent TGF-β 
complex, which promotes activation of latent TGF-β 
and subsequent EMT [210]. Similar to other ECM com-
ponents, TN-C has multiple pro-tumorigenic roles that 
extend beyond EMT, including the regulation of angio-
genesis, tumor immunity, and immunosuppression, mak-
ing it a potential anti-cancer target [216].

Matrix metalloproteinases (MMPs)
MMPs are the primary enzymes responsible for collagen 
and other protein degradation in ECM [217–219]. MMPs 
are endopeptidases that utilize zinc and calcium ions for 
their enzymatic activity, with 24 MMPs found in humans 
[220]. The MMP-2, matrix metalloproteinase 3 (MMP-3), 
matrix metalloproteinase 7 (MMP-7), matrix metallopro-
teinase (MMP-13), matrix metalloproteinase 14 (MMP-
14), and matrix metalloproteinase 26 (MMP-26) have 
been shown to be critical effectors of Wnt-induced EMT 
[221–223]. In addition, suppression of MMP-9 in highly 
invasive cervical carcinoma A433 cells greatly reduced 
the expression levels of vimentin, fibronectin, and migra-
tion capability [224]. Knocking down of MMP-9 can 
inhibit Snail expression, indicating the existential loop 
between MMP-9 and Snail expression [220]. Further-
more, MMP-3 causes an increase in reactive oxygen spe-
cies (ROS), upregulating Snail expression and inducing 
EMT [225]. Despite the critical role of MMPs in cancer 
progression, development of MMP inhibitors has not 
been clinically successful. This is largely due to the fact 
that MMPs have normal system-wide functions, leading 
to poorly-tolerated musculoskeletal pain induced by the 
majority of tested anti-MMP formulations [226, 227]. 
Current research is focusing on developing inhibitors 
with higher selectivity for specific MMPs and novel deliv-
ery methods to target only the affected tissues, poten-
tially leading to improved clinical outcomes.
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Cancer cell‑immune cell crosstalk promotes EMT
A complex interplay and bi-directional communication 
exists between immune cells and cancer cells in the TME 
[228–230]. EMT-TFs expressed by tumors have been 
reported to recruit and activate immune cells, which in 
turn release EMT-inducing cytokines and chemokines. 
Notably, Snail promotes neutrophil infiltration, upregu-
lating chemokine (C-X-C motif ) ligand 2 (CXCL2) and 
inducing lung cancer progression [231]. In addition, Snail 
endorses the recruitment of TAMs through the transac-
tivation of chemokine (C–C motif ) ligand 2 (CCL2) and 
chemokine (C–C motif ) ligand 5 (CCL5) [232]. Twist can 
also enhance the recruitment of macrophages through 
the modulation of the macrophage chemoattractant 
CCL2 [233]. Induction of these immune cells through 
the EMT activation can promote EMT maintenance and 
facilitate tumor dissemination [234].

Neutrophils and macrophages
Neutrophils and macrophages are immune cells of mye-
logenous origin that can drive tumor progression and 
metastasis by secreting of EMT-inducing cytokines [235, 
236]. TANs comprise a variable proportion of immune 
cells in the TME across malignancies, and the interest 
in their immunomodulatory role and potential for tar-
geting has prominently increased in recent years [237]. 
Similar to other immune cells, TANs can be classified 
based on their functional state or polarization into two 
main subtypes: 1) N1 or anti-tumor TANs, and 2) N2 
or immunosuppressive TANs. However, there is limited 
information on how to unambiguously identify these 
neutrophil subpopulations using specific markers in 
human malignancies. TANs are expected to enter tumors 
from peripheral blood, have a short half-life of ~ 7–10 
h in circulation, exert immunosuppressive functions, 
and notoriously associate with worse prognosis in can-
cer patients [238–240]. The mechanisms mediating the 
immunosuppressive role of TANs are not fully elucidated 
and include the local production of neutrophil extracel-
lular traps (NETs) after IL-8 stimulation [241–243] and 
release of immunosuppressive signals such as TGF-β, 
Arginase-1 and ROS [244–247]. EMT contributes to gas-
tric cancer progression and recurrence following therapy. 
Li et  al. (2019) showed that TANs produce interleukin-
17A (IL-17a), which in turn activated the JAK2/STAT3 
pathway to promote EMT and enhance the migration 
and invasion of gastric cancer cells. Accordingly, the 
addition of an IL-17a-neutralizing antibody was able to 
reverse neutrophil-mediated activation of STAT3, lead-
ing to reduced cell migration and invasion. TANs were 
largely present in tissues of gastric patients and were 
enriched especially at the invasion margin. TAN levels 

at the invasion margin were an independent predictor 
of poor disease-free survival and disease-specific sur-
vival. This study suggests that IL-17a-targeted therapy 
may be used in future treatments of patients with gastric 
cancer [248] (Table 2). Moreover, TANs induce EMT in 
breast cancer through the secretion of TIMP-1 cytokine. 
TIMP-1 production is reinforced via a sustained CD90-
mediated contact of breast cancer cells with neutrophils. 
This demonstrates the complex crosstalk and the exist-
ence of multiple paracrine loops between tumor cells 
and immune cells, resulting in profound effects on tumor 
progression [249]. Possible strategies to target TANs in 
cancer patients include the blockade of the interleukin 8 
(IL-8)/C-X-C motif chemokine receptor 1 (CXCR1)/C-
X-C motif chemokine receptor 2 (CXCR2) axis, and the 
targeting of TGF-β, vascular endothelial growth factor 
(VEGF) and/or granulocyte–macrophage colony-stimu-
lating factor (GM-CSF) signaling pathways using mono-
clonal antibodies or small molecule inhibitors [250–253]. 
The majority of tissues comprise resident macrophages 
that regulate tissue homeostasis and immune defense. 
Upon cancer formation, the number of macrophages 
expands through in  situ proliferation, and concurrently, 
monocyte-derived macrophages (MDMs) are recruited 
into the TME [254]. This results in a distinct spectrum of 
TAMs, which is further modified through the myriads of 
cellular interactions within the TME, giving rise to TAMs 
exhibiting functional heterogeneity among various can-
cer types [255–257]. Macrophages are an extremely plas-
tic cell type within the TME, since they can differentiate 
according to signals present in their individual microen-
vironments (e.g. cytokines) [258–260]. In addition, mac-
rophages can be divided into at least two subtypes based 
on their extreme polarization status: 1) pro-inflammatory 
phenotype-featuring classically activated (M1-like) mac-
rophages, or 2) anti-inflammatory phenotype-featuring 
alternatively activated (M2-like) macrophages [261]. This 
intrinsic macrophage plasticity is often influenced by the 
disease stage and/or the affected tissue, which regulate 
whether TAMs suppress or endorse carcinogenesis [262]. 
In general the anti-inflammatory M2-like TAMs perform 
functions and dampen anti-tumor activity, secrete tumor 
promoting growth factors and facilitate metastasis [263]. 
However, mounting evidence from single cell omics stud-
ies illustrated molecular heterogeneity of TAMs with at 
least seven distinct populations preserved across over 25 
human cancer types [264]. Functionally, TAMs promote 
cancer initiation by inflammation [265] and enhance con-
secutive cancer progression by escaping immune surveil-
lance, augmenting immunosuppression, and increasing 
tumor cell invasion [266–269]. Moreover, TAM activ-
ity may contribute to tumor relapse following treat-
ment with conventional therapeutic modalities [270]. 
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For instance, augmented migration of MDMs to the 
persisting cancer is guided by the increased generation 
of colony-stimulating factor 1 (CSF1), a TAM-secreted 
cytokine [271]. MDMs can also promote bone metastasis 
outgrowth of breast cancer in an interleukin-4 receptor 
(IL4R) dependent manner [272]. The presence of TAMs 
has been increasingly associated with the upregulation 
of a mesenchymal marker vimentin, a reciprocal down-
regulation of E-cadherin, alongside enhanced cell migra-
tion and invasion in numerous types of cancer [273–276], 
which could be driven by TAM-associated secretion of 
IL-6 [277, 278] and EGF [274]. In line with this, Kuwada 
et al. (2018) demonstrated that TAM-induced EMT, can 
in turn, confer resistance to gemcitabine chemotherapy 
in a pancreatic cancer model [279]. Huang et  al. (2020) 
showed that TAM-secreted CCL5 can endorse the 
migration, invasion, and EMT of prostate cancer cells, 
as well as the self-renewal of prostate cancer stem cells 
(PCSCs) in  vitro. STAT3 was validated as the most sig-
nificant response gene in prostate cancer cells following 
CCL5 treatment. CCL5 was further revealed to promote 
PCSC self-renewal and prostate cancer metastasis via 
activation of the β-catenin/STAT3 signaling. Interest-
ingly, knockdown of CCL5 in TAMs not only suppressed 
prostate cancer xenografts growth and bone metastasis, 
but also inhibited the self-renewal and tumorigenicity of 
PCSCs in vivo. Finally, high CCL5 expression was signifi-
cantly associated with high Gleason grade, poor progno-
sis, metastasis, and enhanced PCSC activity in prostate 
cancer patients. These results suggest that TAMs/CCL5 
can promote PCSC self-renewal and prostate cancer 
metastasis via activating β-catenin/STAT3 signaling, and 
provide a novel rationale for the development of TAMs/
CCL5 as a potential molecular target for PCSC elimina-
tion [280] (Table 2).

Myeloid‑derived suppressor cells (MDSCs)
MDSCs, which are typically undetectable under normal 
physiological conditions, derive from the same differen-
tiation lineage as neutrophils and macrophages but arise 
in cases of chronic pathological conditions induced by 
prolonged stress signals [281]. MDSCs possess immuno-
suppressive properties, mainly through the production 
of Arginase 1 (ARG1) and inducible nitric oxide synthase 
(iNOS) enzymes, and are highly expressed in cancers 
[282]. MDSCs stimulate breast cancer cell EMT in vitro 
through IL-6 induction [283] and in melanoma cells 
through activation of the TGF-β-, EGF and HGF signal-
ing pathways [284]. MDSCs also produce large quantities 
of MMPs, especially MMP-9, further facilitating tumor 
migration and metastasis [285]. In addition, the AMPK 
inhibitor-induced suppression of MDSCs decreased cell 
migration in  vitro [286], while the depletion of MDSCs 

significantly reduced the number of lung metastasis 
in vivo [287]. Interestingly, treatment strategies targeting 
MDSCs have exhibited promising outcomes to efficiently 
diminish cancer spread in numerous preclinical studies 
and clinical trials when administrated singly or in combi-
nation with other anticancer drugs         [288–292].

Dendritic cells (DCs)
DCs are specialized innate immune cells involved primar-
ily in antigen presentation and T-cell modulation. DCs 
are considered as professional antigen-presenting cells 
(APCs) and they comprise a heterogeneous population 
of cells classified on their maturation state and functional 
features into multiple subsets including conventional 
dendritic cells (cDC1 and cDC2), plasmacytoid dendritic 
cells (pDCs), Langerhans cells and inflammatory DCs 
[293–295]. Though some DCs can display a tolerogenic 
effect, their main functions in cancer are immunostimu-
latory, and include the internalization of antigens that 
are released in the TME or presented to naïve CD4/
CD8+ T-cells via major histocompatibility complex class 
I (MHC-I)/MHC-II molecules (e.g. T-cell priming), the 
production of proinflammatory cytokines such as IL-6, 
interleukin 12 (IL-12), interleukin 15 (IL-15), and the 
interaction with other innate immune cells such NK cells, 
macrophages, or mastocytes. Several studies indicate that 
major DC subpopulations are reduced in cancer, which 
can compromise the innate-adaptive immune interac-
tions and mediate tumor tolerance. Specifically, cross-
presenting BATF3/XCR1-expressing cDC1 have been 
shown to be critical to mount productive anti-tumor 
responses in preclinical models and mediate tumor rejec-
tion after treatment with immune checkpoint inhibi-
tors (ICIs). Furthermore, several studies have reported a 
positive correlation between intra-tumoral cDC1 density 
and patient outcomes across different solid tumor types 
[296–299]. The role of other cDC subsets in tumorigen-
esis, cancer progression, and anti-cancer treatments of 
human tumors remains less understood.

T‑cells and natural killer (NK) cells
T‑cells  Contrary to the aforesaid myelogenous immune 
cells, T-cells are lymphocytes primarily implicated in 
immune-surveillance and antitumor activities [300–303]. 
T-cells are critical for targeting cancer cells by recognizing 
antigens presented by major histocompatibility complex 
(MHC) molecules on cancer or antigen-presenting cells. 
Identifying and targeting cancer-specific or overexpressed 
self-antigens is essential for redirecting T-cells against 
tumors [304, 305]. This involves identifying mutated or 
overexpressed self-proteins in cancer cells, which guide 
T-cell receptors in recognizing and attacking these cells. 
Hence, antigen-directed cytotoxicity mediated by T-lym-
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phocytes has become a central focal point in the battle 
against cancer utilizing the immune system. Both CD8+ 
and CD4+ T-cells are crucial in combating tumors. CD4+ 
cells prime CD8+ cytotoxic lymphocytes for full activa-
tion, which is essential for effective immune responses 
against tumors [306]. T-cells scan for MHC-peptide com-
plexes to activate tumor-specific responses, and studies 
show that reducing CD4+ cells impair tumor rejection. 
However, CD4+ Tregs can suppress immune responses 
and might hinder anti-tumor immunity, representing a 
challenge for effective cancer immunotherapy. Tregs sup-
press immune functions through various mechanisms, 
including production of immunosuppressive cytokines, 
generation of immunosuppressive metabolites cytotoxic 
T-lymphocyte-associated protein-4 (CTLA-4)-mediated 
suppression of APC function, as well as consumption of 
interleukin 2 (IL-2) [307].

Natural killer (NK) cells  NK cells are a vital compo-
nent of the innate immune system, capable of identifying 
and eliminating malignant cells [308–311].  They recog-
nize aberrant or stressed surface molecules commonly 
found on cancerous cells, while their functional activity 
is inhibited by human leukocyte antigen (HLA) molecules 
displayed on these cells. Upon identifying a target, NK 
cells release cytotoxic granules containing perforin and 
granzymes, which induce apoptosis in the target cells. 
In addition, NK cells engage in antibody-dependent cell-
mediated cytotoxicity (ADCC) by binding to cancer cells 
coated with antibodies, thereby facilitating their destruc-
tion [312]. Furthermore, NK cells secrete cytokines such 
as interferon-gamma (IFN-γ) and TNF-α, which play piv-
otal roles in bolstering anti-tumor immune responses by 
activating other immune cells and impeding cancer cell 
proliferation. The versatility of NK cells for cancer immu-
notherapy is demonstrated by their ability to recognize 
stressed cells broadly, regardless of neoantigen presen-
tation, and their enhanced activity against tumors that 
have lost class I HLA expression due to acquired resist-
ance mechanisms. This positions them as promising can-
didates for cancer therapy, particularly through adoptive 
transfer [313, 314].

NK cells and T‑cells contribute to EMT  Several studies 
have demonstrated that both NK cells and T-cells can pro-
mote EMT [315, 316]. NK cells generate IFN-γ and TNF-α 
that promote EMT in hepatocellular carcinoma in  vivo 
[317] and in melanoma cells [318]. In pancreatic cancer, 
co-culturing with CD4+CD25− T-effector cells lead to a 
phenotypic change towards the mesenchymal phenotype, 
with an associated reduction of E-cadherin and upregula-
tion of vimentin and ZEB1 [319]. Particularly, the expres-
sion of CD147 glycoprotein on T-cells is crucial for the 

induction of EMT [320]. Due to these aforementioned 
dual properties of NK and T-cells, cytokine therapy may 
be more effective than directly targeting these immune 
cells [321]. Accordingly, recent research has shown that 
abrogating cytokines can result in a decrease of cancer 
cell dissemination, despite the presence of NK cells or 
T-cells [317, 322]. Several groups have also reported that 
CD24+ CD25+ Tregs in the TME can promote tumor 
growth, EMT and activate metastasis through TGF-β 
signaling [323, 324]. Besides, Tregs exposure induces 
TGF-β-mediated EMT in surrounding melanoma cells, 
which in turn, enhance their migration, invasion and met-
astatic spread [323]. Similarly, hepatocellular carcinoma 
patients with poor cancer-free and overall survival (OS) 
rates have displayed high infiltrations of Tregs, decreased 
E-cadherin expression, as well as enhanced vimentin and 
TGF-β1 expression in cancerous tissue compared to nor-
mal liver tissue. In line with this, the addition of a TGF-
β1-neutralizing antibody in Treg-conditioned media has 
been found to impede the migratory and invasive capaci-
ties of murine hepatoma cells [325].

Tumor‑ and CAF‑derived exosomes contribute to EMT
Apart from the stromal and immune cells, exosomes are 
also critical TME players [326, 327] since they function 
as important signaling molecules that augment com-
munication between cancer cells and TME [328–332]. 
Exosomes are small lipid-bilayer-enclosed vesicles [333] 
mediating the horizontal transfer of biological molecules 
from the donor to recipient cells by endocytosis or sys-
temic transport to distant sites [334]. Tumor-derived 
exosomes have been implicated in EMT and cancer pro-
gression by carrying oncogenic materials to adjacent 
cells, thereby transforming cells into a pro-metastatic 
EMT phenotype, and thus, leading to a sustained tumor 
growth [335–338]. For instance, exosomes isolated from 
chronic myelogenous leukemia contain glycoprotein 
amphiregulin, triggering epidermal growth factor recep-
tor (EGFR) in bone marrow MSCs that in turn induces 
the expression of Snail and its EMT-related targets [339]. 
Apart from tumor-derived exosomes, CAFs also produce 
exosomes to directly transfer Snail as an EMT-TF to lung 
cancer cells; and interestingly, this EMT-inducing effect 
can be inhibited by treating CAFs with an inhibitor of 
exosomal release [340]. In addition, Wnt10b delivered by 
fibroblast exosomes has been reported to induce EMT 
[341], while exosomes obtained from stromal adipocytes 
activate Hippo pathway mediated-EMT in breast cancer 
cells [342].

Exosomal RNAs
Numerous studies have shown that exosomal microRNA 
(miRNA or miR) play a key role in promoting EMT in 
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various cancer types [343–332]. Indeed, the hypoxic glio-
blastoma cell-secreted exosomal miR-301a and the lung 
cancer cell-secreted exosomal miR-1260b activate Wnt 
signaling/β-catenin [350, 351]. Moreover, high expression 
of the exosomal miR-665 induces HCC cell proliferation, 
invasion, migration and EMT through regulating the 
Hippo signaling pathway [352]. In CAF-derived 
exosomes, miRNA sequencing has identified increased 
levels of miR-21, miR-143, and miR-378e, promoting the 
EMT phenotype in breast cancer cells [353]. High levels 
of miR-92a-3p have also been detected in CAF-derived 
exosomes, which are directly transferred to CRC cells 
and induce EMT through activation of Wnt/β-catenin 
pathway [354]. Notably, cancer stem cell-like cells secrete 
exosomes containing the lncRNA DOCK9-AS2 that can 
increase metastasis of papillary thyroid carcinoma cells. 
This exosomal lncRNA DOCK9-AS2 promotes the 
expression of CTNNB1 via the miRNA-1972 sponging, 
resulting in Wnt/β-catenin induction and increased 
metastasis of cancer cells. Furthermore, the exosomal 
lncRNA DOCK9-AS2 is upregulated in papillary thyroid 
carcinoma and can be considered as a potential thera-
peutic target for reversing EMT and impairing metastasis 
[355]. Interestingly, CAFs are capable of secreting the 
exosomal lncRNA LINC00659 promoting metastasis of 
CRC cells via EMT induction. Exosomes function as cell 
communicators and transfer LINC00659 from CAFs to 
CRC cells [356]. The exosomal LINC00659 decreases 
miRNA-342-3p expression to upregulate ANXA2, lead-
ing to EMT-mediated metastasis [357]. In addition, the 
exosomal circRNAs have also been reported to induce 
EMT thereby endorsing metastasis. However, further 
studies are necessary to better understand the exact func-
tion of exosomal circRNAs in EMT modulation in 
tumors [358]. A recent study showed that exosome-
derived miR-224-5p is upregulated in NSCLC patient tis-
sues and cell lines, and induces cell proliferation and 
metastasis in NSCLC and human lung cells. In addition, 
androgen receptor (AR) was characterized as a direct tar-
get of miR-224-5p. Importantly, tumor xenograft assay 
experiments demonstrated that overexpression of miR-
224-5p drive NSCLC tumor growth via the inhibition of 
AR and the mediation of EMT. These data suggest that 
miR-224-5p-enriched exosomes trigger carcinogenesis by 
directly targeting AR in NSCLC, which can provide novel 
potential therapeutics for NSCLC [359] (Table  2). 
Recently, novel mechanisms underlying the pro-tumori-
genic effects of CAFs have been identified in several can-
cers. Hu et  al. (2019) reported that CAFs secrete 
exosomes to promote metastasis and chemotherapy 
resistance by augmenting cell stemness and EMT in 
CRC. CAFs exerted their roles by directly transferring 
exosomes to CRC cells, resulting in increased 

miR-92a-3p level in CRC cells. Augmented expression of 
miR-92a-3p activated the Wnt/β-catenin signaling path-
way and suppressed mitochondrial apoptosis by direct 
inhibition of MOAP1 and FBXW7, thereby contributing 
to cell stemness, EMT, metastasis and 5-fluorouracile 
(5-FU)/oxaliplatin resistance in CRC. Clinically, miR-
92a-3p expression enhanced in CRC tissues and nega-
tively correlated with the MOAP1 and FBXW7 levels in 
CRC specimens. Besides, high expression of exosomal 
miR-92a-3p in serum was significantly associated with 
metastasis and chemotherapy resistance in CRC patients 
[354] (Table 2). A recent study demonstrated that micro-
RNA-181d-5p-containing exosomes derived from CAFs 
promote EMT by downregulating CDX2/HOXA5 in 
breast cancer. Nude mice bearing xenografted MCF-7 
cells, injected with CAF-derived exosomes, were evalu-
ated for tumor formation. HOXA5 was expressed at low 
level in breast cancer tissues, and its overexpression 
delayed MCF-7 cell proliferation, invasion, migration, 
and EMT, and concurrently increased apoptosis in vitro. 
Coculture of CAFs and MCF-7 cells led to CAF-mediated 
prolonged proliferation, and antagonized apoptosis of 
MCF-7 cells via release of exosomes. Coculture of MCF-7 
cells and CAF-derived exosomes identified miR-181d-5p 
as a mediator of the exosomal effects on MCF-7 cells, in 
part via downregulation of CDX2 and HOXA5. In addi-
tion, CAF-derived exosomes containing miR-181d-5p 
endorsed tumor growth of nude mice bearing xeno-
grafted MCF-7 cells. These results suggest that exosomal 
miR-181d-5p plays an important role in CAF-mediated 
effects on tumor environment in breast cancer via CDX2/
HOXA5 [360] (Table  2). Li et  al. (2018) reported that 
CAFs contribute to oral cancer cell proliferation and 
metastasis via exosome-mediated paracrine miR-34a-5p. 
The expression of miR-34a-5p in CAF-derived exosomes 
was found to be reduced, and fibroblasts were able to 
transfer exosomal miR-34a-5p to oral squamous cell car-
cinoma cells. In experiments using xenografts, miR-
34a-5p overexpression in CAFs suppressed the 
carcinogenesis of oral squamous cell carcinoma cells. 
Moreover, miR-34a-5p bound to its direct downstream 
target AXL to inhibit oral squamous cell carcinoma cell 
proliferation and metastasis. Stable ectopic expression of 
AXL in miR-34a-5p-overexpressing oral squamous cell 
carcinoma cells restored proliferation and motility abro-
gated by the miRNA. Furthermore, the miR-34a-5p/AXL 
axis stimulated oral squamous cell carcinoma progres-
sion via the AKT/GSK-3β/β-catenin pathway, which 
induced EMT to promote cancer cells metastasis. The 
miR-34a-5p/AXL axis increased nuclear translocation of 
β-catenin, and then triggered transcriptional upregula-
tion of SNAIL, which in turn induced both MMP-2 and 
MMP-9. These data emphasize that the miR-34a-5p/AXL 
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axis can confer aggressiveness in oral cancer cells through 
the AKT/GSK-3β/β-catenin/Snail signaling cascade, and 
thus, may represent a therapeutic target for oral squa-
mous cell carcinoma [334] (Table  2). A recent study 
showed that CRC-associated fibroblasts promote metas-
tasis by upregulating leucine rich alpha-2-glycoprotein 1 
(LRG1) through stromal IL-6/STAT3 signaling. CAF-
induced LRG1 endorsed CRC migration and invasion 
that was concomitant with the induction of EMT. CAF-
secreted IL-6 was responsible for LRG1 upregulation in 
CRC, which occurred through a direct transactivation by 
STAT3 following JAK2 activation. In clinical CRC sam-
ples, LRG1 expression was positively correlated with the 
CAF-specific marker α-SMA, and a higher LRG1 expres-
sion predicted unfavorable clinical outcomes, supporting 
the significant role of LRG1 in CRC progression. This 
study provided novel insights into CAF-mediated metas-
tasis in CRC, and suggests that therapeutic targeting of 
the CAF-mediated IL-6-STAT3-LRG1 axis may be a valu-
able approach to reduce metastasis in CRC [361] 
(Table  2). Ren et  al. (2021) reported that autophagic 
secretion of high mobility group box 1 B1 (HMGB1) from 
CAFs promotes metastatic potential of NSCLC cells via 
the NFκB signaling. Blockade of CAF autophagy dimin-
ished their regulation on EMT and metastasis-related 
genes of NSCLC cells. CAF-secreted HMGB1 mediated 
the effect of CAFs on lung cancer cell invasion. In par-
ticular, the autophagy suppression of CAFs revealed that 
release of HMGB1 was dependent on autophagy. In addi-
tion, HMGB1 was partially responsible for autophagy 
activation of CAFs, suggesting that CAFs remain active 
through an autocrine HMGB1 loop. Moreover, HMGB1 
increased lung cancer cell invasion by activation of the 
NFκB pathway. These results clarified an oncogenic func-
tion for secretory autophagy in lung cancer-associated 
CAFs that endorses metastasis potential, and suggests 
HMGB1 as a novel therapeutic target [362] (Table  2). 
Another study demonstrated that CAF-educated mono-
cytes exhibit strong immune suppression and enhance 
the motility/invasion of breast cancer cells in addition to 
increasing the expressions of EMT-related genes. 
Recruitment of monocytes by CAFs was mediated by 
monocyte chemotactic protein-1 (MCP-1) and stromal 
cell-derived factor-1 (SDF-1) cytokines. CAFs differenti-
ated the recruited monocytes into M2-like macrophages, 
which were able of determining their immunosuppres-
sive roles via the programmed cell death protein 1 (PD-1) 
axis. CAF-educated M1 macrophages exhibited 
enhanced expression of M2 markers, and generation of 
anti-inflammatory cytokine interleukin 10 (IL-10), in 
contrast to reduced production of pro-inflammatory 
cytokine IL-12, compared to control M1 macrophages. 
This suggested that CAFs were also capable of inducing 

the trans-differentiation of M1 macrophages to M2 mac-
rophages. Interestingly, high grade of CAFs was signifi-
cantly related to the number of TAMs in human breast 
cancer tissue samples, and with increased Ki-67 prolifer-
ation index and higher tumor volume. These data empha-
size that CAFs play key roles in shaping the tumor 
microenvironment in breast cancer, and therapeutic 
approaches to reverse the CAF-mediated immunosup-
pressive microenvironment ought to be considered in 
future studies [363] (Table 2).

Strategies to analyze the TME
Multiple strategies have been used to study the TME in 
both preclinical models and human specimens. Spa-
tially resolved methods to map different cell types, ECM 
components, biological signals/receptors and thera-
peutic targets include a wide range of platforms such as 
single-marker chromogenic IHC, low-plex multiplexed 
immunofluorescence (mIF), high-plex metal conjuga-
tion and mass spectrometry-based methods (e.g. imaging 
mass cytometry, multiple ion beam imaging), high plex 
barcoding-based and/or cyclic staining methods (e.g. 
CODEX, CycIF), and more recently spatial transcriptom-
ics approaches. The major advantage of these platforms 
is the use of intact tumor specimens and preservation 
of architectural context for data visualization and inter-
pretation (e.g. cell location, distribution and cell–cell 
or cell-molecule interactions). Additional technologies 
prominently used to study the TME composition using 
disaggregated tumor specimens include flow cytom-
etry, high-plex cytometry by time of flight (e.g. CyTOF), 
bulk mRNA sequencing with cell-type deconvolution 
(e.g. CYBERSORTx, TIMER, etc.) and single-cell RNA 
sequencing-based approaches (e.g. single-cell RNAseq 
with or without 5 prime T-cell receptor (TCR)/B-cell 
receptor (BCR) clonality analysis, CITE-seq, scATAC-
seq, etc.) [364, 365]. The major advantages of these strat-
egies are their single-cell resolution and relatively high 
throughput. In general, these methods are expensive, can 
display limited sensitivity and produce large amounts 
of data requiring labor-intensive data analysis. To date, 
most of these strategies have not been incorporated in 
the clinic.

Developments in TME‑targeting strategies
Due to the growing evidence highlighting the role of the 
TME in EMT induction, cancer progression, and thera-
peutic outcomes, targeting the key players involved in the 
TME has emerged as an attractive therapeutic strategy to 
prevent EMT and metastasis in recent years [366–374]. 
Several TME-targeting approaches have been devel-
oped as potentially treatments for cancers character-
ized by the presence of these important TME players. 
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These therapeutic approaches mainly focus on targeting 
the cells of the adaptive immune system (e.g., T-cells or 
T-lymphocytes and B-cells or B-lymphocytes), the cells 
of the innate immune system (NK cells, TAMs, MDSCs, 
DCs, and neutrophils), stromal cells (CAFs), as well as 
tumor vasculature and the ECM (Fig. 3). From a pharma-
ceutical design perspective, various targeting agents can 
be employed in TME-targeting strategies, including small 
molecule inhibitors, peptides, antibodies, nanoparticles, 
and bifunctional systems that combine these agents with 
imaging contrast moieties or therapeutic (radioactive or 
chemoactive) payloads. A rigorous review of pharma-
ceutical design in this context is outside the scope of this 
review, but we refer the reader to the following excel-
lent reviews on this topic: Zeglis and Lewis (2011) [375], 

Blower (2015) [376], Heinzmann et al. (2017) [377], Mau-
rer et al. (2022) [378], and Xie et al. (2023) [379]. Below 
we describe how various immune cell populations in 
the TME can be exploited to improve their anticancer 
responses, particularly focusing on therapies that have 
either been FDA-approved or are being tested in the 
clinic (Tables 3–8) (Figs. 4, 5).

Targeting the adaptive immune system
In the TME immune cells are the predominant non-
cancerous cell type, including various adaptive immune 
cells such as T-cells, and innate immune cells such as 
NK cells, TAMs, MDSCs, neutrophils, and APC DCs 
[380–383]. Below, we describe the key functions of the 
main adaptive immune cell populations comprising 

Fig. 3  Each cell type present in the TME can contribute to the regulation of cancer progression and therapeutic response individually and thus 
several TME-directed therapies have been developed. The major strategies, which either have been FDA-approved or are currently being 
under clinical investigation, principally focus on the targeting of T-cells, DCs, TAMs, CAFs, ECM, and tumor vasculature; and thus, are indicated 
in the figure (black boxes) and referenced in the review. Targeting T-cells includes immune checkpoint inhibition, and T-cell therapies; targeting 
DCs comprises DC activation, DC recruitment, and DC vaccines; targeting TAMs consists of TAM depletion, and TAM re-education; targeting CAFs 
includes CAF depletion, inhibition of CAF activation, and CAF normalization; targeting ECM comprises increased ECM degradation, blockage 
of ECM synthesis, repurposing of drugs with antifibrotic properties, and targeting integrins or the downstream effector FAK; and targeting tumor 
vasculature consists of antiangiogenic therapies, and vessel normalization. DCs: Dendritic cells; TAMs: Tumor-associated macrophages; CAFs: 
Cancer-associated fibroblasts; ECM: Extracellular matrix; FAK: Focal adhesion kinase. This figure has been created with BioRender.com
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the TME, emphasizing on ways to improve their func-
tional responses against tumors. There is a current 
trend toward an increasing number of immunothera-
peutic approaches being developed and explored. The 
most active and promising immunotherapies focus 
on immune checkpoints, adoptive cell transfer (e.g., 
tumor-infiltrating lymphocytes (TILs), TCRs, and 
chimeric antigen receptor (CAR) T-cell therapy, and 
cancer vaccines that intercept or treat cancer [384]. 
However, these therapies share several common chal-
lenges. Despite the impressive clinical success of sev-
eral ICIs targeting programmed cell death-ligand 
protein 1 (PD-L1), CTLA-4, and lymphocyte activa-
tion gene-3 (LAG-3), only a minority of eligible tumors 
respond, with some tumor types not responding at 

all. Non-responsiveness is more common in immune-
excluded and cold tumors, though inflamed tumors can 
also show resistance [385]. In addition, ICIs can cause 
immune-related toxicities, which may be chronic or 
even life-threatening [386]. Therefore, predictive bio-
markers are urgently needed to better predict response 
and toxicity, ensuring optimal patient selection. CAR-T 
cells face challenges related to antigen specificity 
and they can also lead to serious side effects such as 
cytokine release syndrome (CRS), neurotoxicity, and 
chronic hypogammaglobulinemia. Expanding the suc-
cess of CAR-T therapy from hematologic malignan-
cies to solid tumors has proven difficult, largely due to 
tumor heterogeneity, inadequate T-cell trafficking, and 
the immunosuppressive TME [387]. Similarly, vaccines 

Fig. 4  Timeline of FDA approvals for ICIs targeting T-cells, B-cells, TAMs, CAFs, and tumor vasculature. Timeline of FDA approvals for ICIs targeting 
T-cells (blue rectangles), B-cells (red rectangles), TAMs (orange rectangle), CAFs (yellow rectangles), and tumor vasculature (green rectangles) 
is shown. Black arrows below the ICIs: years in which the first FDA approval occurred. Grey squares at the top-left of each inhibitor: cancer type/s 
related to the first FDA approval of the corresponding inhibitor. ASTs: Advanced solid tumors; BCC: Basal cell carcinoma; CLL: Chronic lymphocytic 
leukemia; CRC: Colorectal cancer; GC: Gastric cancer; GISTs: Gastrointestinal stromal tumors; HCC: Hepatocellular carcinoma; HL: Hodgkin 
lymphoma; MCL: Mantle cell lymphoma; MEL: Melanoma; MZL: Marginal zone lymphoma; NSCLC: Non-small cell lung cancer; PC: Pancreatic cancer; 
RCC: Renal cell carcinoma; SLL: Acute lymphocytic leukemia; STS: Soft tissue sarcoma; TC: Thyroid cancer; TGCTs: Tenosynovial giant cell tumors; 
UC: Urothelial cancer; WM: Waldenström macroglobulinemia. Asterisk (*) beside grey-squared ASTs: year in which the first (of a series of ) AST FDA 
approval occurred for a particular ICI. Circled capital letters at the top-right of each inhibitor: biopharmaceutical companies related to the first FDA 
approval of inhibitors. Ⓐ: AstraZeneca; Ⓑ: Bayer AG; Ⓓ: Daiichi Sankyo Company; Ⓔ: Eli Lilly and Company; Ⓖ: GlaxoSmithKline (GSK); Ⓙ: Janssen 
Pharmaceuticals, Inc; Ⓜ: Merck Inc; Ⓝ: Novartis; Ⓟ: Pfizer Inc; Ⓡ: Bristol-Myers Squibb Company; Ⓢ: Sanofi SA; Ⓣ: Genentech Inc; Ⓥ: AbbVie Inc
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face the challenge of identifying the most specific 
and effective tumor-associated or disease-associated 
antigens to target, as well as determining the optimal 

patient populations. Lastly, practical challenges com-
mon to both CAR-T therapies and vaccines include 

Fig. 5  Targeting of different TME components (adaptive immune system, innate immune system, CAFs, tumor vasculature, and ECM), for cancer 
therapy. Diverse agents are being/have been used to target different TME components such as adaptive immune system (T-cells and B-cells), 
innate immune system (TAMs, MDSCs, and DCs), CAFs, tumor vasculature, and ECM, for cancer therapy used in clinical trials or approved 
by the FDA. Targeted molecules (ANG2-TIE2, BCR, CCL2, CCR2, CD40, CD47, Collagen, CSF1R, CTGF, CTLA4, CXCR4, FAK, FAP, FGFR, FLT3L, GM-CSF, 
HA, Hedgehog, ICOS, LAG-3, LOXL2, OX40, PD-1, PDE5, PDGFR, PD-L1, PI3K, ROCK, RTK, SIRPα, TGF-β, TIGIT, TIM-3, TREM2, uPAR, VEGF, VEGFR, VISTA, 
Vitamin A, Vitamin D) are written (along the lines) in red. ANG2-TIE2: Angiopoietin-2-TIE2; BCR: B-cell receptor; CCL2: CC-motif chemokine ligand 
2; CCR2: CC-chemokine receptor 2; CD40: Cluster of differentiation 40; CD47: Cluster of differentiation 47 or integrin associated protein (IAP); 
CSF1R: Colony-stimulating factor-1 receptor; CTGF: Connective tissue growth factor; CTLA4: Cytotoxic T lymphocyte-associated protein-4; CXCR4: 
C-X-C chemokine receptor type 4; FAK: Focal adhesion kinase; FAP: Fibroblast activation protein; FGFR: Fibroblast growth factor receptor; FLT3L: 
Fms-related tyrosine kinase 3 ligand; GM-CSF: Granulocyte–macrophage colony-stimulating factor; HA: Hyaluronan; HIF1α: Hypoxia-inducible factor 
1α; ICOS: Inducible T-cell co-stimulatory; LAG-3: Lymphocyte activation gene-3; LOXL2: Lysyl oxidase like-2; OX40: OX40 receptor or tumor necrosis 
factor receptor superfamily, member 4 (TNFRSF4); PD-1: Programmed cell death protein 1; PDE5: Phosphodiesterase 5; PDGFR: platelet-derived 
growth factor receptor; PD-L1: Programmed death-ligand 1; PI3K: Phosphoinositide 3-kinase; ROCK: Rho-associated protein kinase; RTK: Receptor 
tyrosine kinase; SIRPα: Signal regulatory protein α; TGF-β: Transforming growth factor-β; TIGIT: T-cell immunoreceptor with Ig and ITIM domains; 
TIM-3: T-cell immunoglobulin and mucin-domain containing-3; TREM2: Triggering receptor expressed on myeloid cells 2; uPAR: urokinase-type 
plasminogen activator receptor; VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth factor receptor; VISTA: V-domain Ig 
suppressor of T-cell activation. TM: Targeted molecule; Abs: Antibodies; SMIs: Small-molecule inhibitors; Rec. cytokines: Recombinant cytokines; 
Others: Recombinant fragment fusion proteins, Vitamin A metabolite, and PEGylated enzyme. Drugs (written in bold): FDA-approved drugs
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issues related to manufacturing, time, costs, and regu-
latory requirements [388].

Targeting T‑cells
Presently, there are two major tumor immunotherapeutic 
strategies targeting T-cells: 1) using ICIs to unleash the 
anti-cancer potency of T-cells; and 2) boosting adaptive 
immunity by adoptive transfer using tumor-infiltrating 
T-cells or engineered T-cells furnished with TCRs, or 
CARs [389, 390] (Fig. 6).

Immune checkpoint inhibitors (ICIs)  Elevated expres-
sion of checkpoint proteins results in the inactivation 
of T-cell immune responses [391–393]. ICIs are mostly 
effective in the TME characterized by highnumbers of 
exhausted T-cells expressing checkpoint proteins. Such 
tumors are usually deemed as immunologically “hot” and 

are most susceptible to the treatment with ICIs. Gener-
ally, the efficacy of ICIs is associated with cancer muta-
tional burden, expression levels of checkpoint proteins/
their ligands, and the presence of CD8+ T-cells within a 
cancer [394–397]. In the majority of cancer patients, pri-
mary resistance can significantly reduce the potency of 
ICI-based therapies in the majority of tumor patients, 
and thus still represents the main problem related to this 
treatment [398–402]. T-cell activation is negatively regu-
lated by several checkpoint molecules, exerting a precise 
control of the immune system by preventing its hyperac-
tivation. Checkpoint molecules comprise: 1) PD-1 [403, 
404]; 2) CTLA-4 [405, 406]; 3) T-cell immunoglobulin and 
ITIM domain (TIGIT) [407, 408]; 4) T-cell immunoglobu-
lin and mucin-domain containing-3 (TIM-3) [409, 410]; 
5) LAG-3 [411, 412] (Table 3) (Fig. 5).

Fig. 6  Therapeutic targeting of T-cells to augment anti-cancer activity. T-cell antitumor activity can be increased through 1) inhibition 
of several immune checkpoint molecules, or 2) adoptive transfer of CAR T-cells, TCR T-cells, or tumor-infiltrating lymphocytes (TILs). The scheme 
on the bottom left of the figure displays five major protein/ligand interactions (e.g. PD-1/PD-L1). Dotted-lines select the square enlargement 
including protein/ligand interaction between a T-cell and a DC. The scheme on the bottom right of the figure shows the five main steps of CAR 
T-cell and TCR T-cell therapy: 1) T-cell collection from blood patients; 2) viral vector-mediated introduction of a CAR gene or a TCR gene; 3) 
generation of CAR T-cells or TCR T-cells; 4) ex-vivo expansion of engineered T-cells (CAR T-cells or TCR T-cells); 5) infusion of CAR T-cells or TCR T-cells 
back into patients. This figure has been created with BioRender.com
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•	  PD-1/PD-L1

Following TCR stimulation T-cells express PD-1, which 
binds to PD-L1 and programmed cell death-ligand pro-
tein 2 (PD-L2). Both ligands are present on APCs and are 
upregulated by proinflammatory cytokines [413]. PD-L1 
expression on tumor cells is also induced by activated 
T-cell-secreted IFN-γ [414]. PD-1 regulates immune 
response by signaling-mediated inhibition of Tregs and 
effector T-cells; and thus, PD-1/PD-L1 signaling critically 
governs and checks the regular induction and division of 
these lymphocytes [306]. As such, the PD-1/PD-L1 axis 
has been a major target during the recent years, with 
promising results in several preclinical and clinical stud-
ies. PD-1-neutralizing antibodies such as nivolumab and 
pembrolizumab, administered as monotherapy or in co-
treatment with other drugs, have exhibited significant 
clinical benefits in advanced solid tumor patients, as well 
as Hodgkin’s lymphoma patients; and thus, have been 
Food and Drug Administration (FDA)-approved for use 
in these cohorts [50–416]. Notably, pembrolizumab has 
shown anticancer activity in advanced NSCLC patients, 
and expression of PD-L1 in at least 50% of cancer cells 
has correlated with improved potency of this PD-1-neu-
tralizing antibody [417]. In addition, pembrolizumab has 
demonstrated a more substantial 6-month progression-
free survival (PFS), greater OS benefit, and improved 
safety profile, in comparison to FDA-approved human 
CTLA-4-blocking antibody ipilimumab in melanoma 
[418]. Similarly, nivolumab has displayed a 72.9% OS in 
comparison to 42.1% OS, in chemotherapy-treated mel-
anoma patients following one year of treatment [419]. 
More recently, based on a phase 2 trial (NCT02760498), 
cemiplimab determined a durable response in approxi-
mately 50% of locally advanced and metastatic cutaneous 
squamous cell carcinoma (cSCC) patients, and as a result 
has been FDA-approved for use in this cohort [420]. 
Moreover, cemiplimab has also received FDA approval 
for advanced basal cell carcinoma (BCC) patients 
(NCT03132636) [421], as well as first-line advanced 
NSCLC patients with PD-L1 expression of ≥ 50% as 
monotherapy (based on the EMPOWER-Lung 1 phase 
3 trial NCT03088540), and first-line advanced NSCLC 
patients in combination with chemotherapy (based on 
the EMPOWER-Lung 3 phase 3 trial NCT03409614) 
[422]. Besides, anti-PD-1 antibody spartalizumab in com-
bination with other drugs has also been used in phase 
2 clinical trials in melanoma patients (NCT03484923), 
metastatic pancreatic ductal adenocarcinoma patients 
(NCT04390763), and recurrent/metastatic nasopharyn-
geal cancer patients (NCT02605967). In the latter 
study, spartalizumab displayed longer OS and duration 
of response (DOR) compared to chemotherapy, and a 

favorable safety profile, consistent with other anti-PD-1 
antibodies [423]. APCs normally express PD-1 ligand 
PD-L1, which regulates differentiation and inhibitory 
activity of Tregs [424]. Nevertheless, TME components 
including cancer cells, DCs, and infiltrating myeloid cells, 
can upregulate PD-1 ligands to determine exhaustion of 
T-cells, thereby generating an immunosuppressive TME 
and promoting cancer progression [425]. PD-L1-neutral-
izing antibodies including atezolizumab, avelumab, and 
durvalumab, singly or in combination with other agents, 
have exhibited significant clinical benefits in advanced 
solid tumor patients, and therefore have also been FDA-
approved for use in these cohorts [50]. Thus, analogous 
to PD-1, suppression of PD-L1 is also efficacious in treat-
ing a variety of cancers (Table 3) (Figs. 4, 5).

•	  CTLA4

The T-cell-expressed CTLA-4 binds to B7-1/B7-2 
on APCs with more affinity than CD28, thus ending 
the co-activating interaction between B7-1/B7-2 and 
CD28 during antigen presentation [426]. Suppression 
of this molecule results in a T-cell activation that may 
be directed against cancer cells. Indeed, numerous pre-
clinical studies have demonstrated that inhibition of 
CTLA-4 determines a durable immunologic memory 
in several tumors; but however, a significant impact has 
not been detected in cancers characterized by stronger 
anti-inflammatory TME, and/or in cancers with reduced 
immunogenicity [427, 50]. Over the last two decades, 
the CTLA-4-neutralizing antibody ipilimumab has been 
investigated in clinical trials for various types of cancer, 
with remarkably durable responses albeit in only a small 
subset of patients, especially in melanoma patients [428], 
leading to its FDA approval in 2011. Since the functions 
of PD-1 and CTLA-4 are non-overlapping, co-adminis-
tration of these two agents also significantly increased the 
response rates in several advanced solid tumor patients, 
and consequently has also been FDA-approved for use 
in these cohorts [50]. For metastatic melanoma patients, 
the combination of ipilimumab + nivolumab is the most 
potent treatment with a median OS of more than 6 years. 
A variety of clinical trials are currently ongoing, often 
in combination with other agents to potentially allow 
a broad range of advanced solid tumor patients to ben-
efit from this therapy. The downside of this combina-
tion is its highly toxicity with grade > 3 immunological 
adverse events occurring in about 60% of the patients. 
Accordingly, a low-dose co-treatment of ipilimumab and 
nivolumab has been evaluated in a multicenter phase 2 
clinical trial (NCT02834013) in unresectable or meta-
static metaplastic breast cancer. This combination has 
shown an overall response rate (ORR) of 18% at > 2 to 
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almost 3 years later, 2 months PFS, and 12 months OS. 
Hence, this co-treatment warrants further investigation, 
particularly because 65% of adverse events, and 47% of 
immune-related adverse events were observed in these 
metaplastic breast cancer patients [429] (Table 3) (Figs. 4,  
5).

•	  TIGIT

The inhibitory receptor TIGIT is expressed by T-cells 
and NK cells [430–432]. CD155, which is expressed 
by both cancer cells and APCs, is the primary ligand of 
TIGIT, and mediates negative regulation of T-cell and 
NK-cell functions [407]. TIGIT-targeted cancer immuno-
therapy is considered a promising strategy since TIGIT 
notoriously suppresses numerous anti-cancer immunity 
mechanisms. Indeed, TIGIT is often upregulated in vari-
ous cancers [433, 430], and its expression is frequently 
associated with poor clinical outcomes, particularly in 
acute myeloid leukemia (AML) [434] and melanoma 
[435]. These data suggest that TIGIT blockage can pro-
tect against several tumor types, resulting in the testing 
ofseveral monoclonal antibodies against human TIGIT 
in ongoing clinical trials [50]. Various clinical trials are 
currently investigating the efficacy and safety of several 
anti-TIGIT antibodies, either as monotherapy or in co-
administration with other immunotherapies, includ-
ing AB154 in phase 1 (NCT03628677) in advanced 
solid tumors (ASTs), in phase 3 (NCT05211895) 
(NCT05502237) in NSCLC, and in phase 3 
(NCT05568095) in advanced upper gastrointestinal tract 
adenocarcinoma; vibostolimab plus anti-PD-1 receptor 
pembrolizumab versus pembrolizumab in a phase 3 trial 
of adjuvant therapy for resected stage IIB to IV mela-
noma patients (NCT05665595), BMS-986207 in phase 2 
(NCT02913313) in ASTs, and in phase 2 (NCT05005273) 
in NSCLC; and tiragolumab in phase 2 (NCT04300647) 
in metastatic and/or recurrent PD-L1-positive cervi-
cal cancer. Due to significant data collected from the 
CITYSCAPE phase 2 clinical study (NCT03563716), 
tiragolumab has recently gained FDA Breakthrough 
Therapy Designation in co-treatment with the anti PD-L1 
atezolizumab for PD-L1-positive recurrent or metastatic 
NSCLC patients. This combination has demonstrated 
significant clinical improvement in ORR and PFS com-
pared to placebo plus atezolizumab, and a favorable 
safety profile, similar to that of atezolizumab singly [436]. 
However, in the SKYSCRAPER-01 phase 3 clinical trial 
(NCT04294810), this combination has improved neither 
PFS nor OS in newly diagnosed metastatic NSCLC with 
at least 50% PD-L1 expression compared to placebo plus 
atezolizumab. In addition, the ongoing SKYSCRAPER-02 
phase 3 clinical trial (NCT04256421), using the same 

aforementioned co-administration, has failed to find 
OS or PFS benefit versus placebo plus atezolizumab in 
small cell lung cancer (SCLC) patients [437]. Further-
more, tiragolumab is presently being evaluated in phase 3 
clinical trials in combination with atezolizumab in locally 
advanced esophageal squamous-cell carcinoma patients 
(NCT04543617) [438], and in a 4-drug combination with 
atezolizumab, carboplatin, and etoposide, in untreated 
extensive-stage SCLC patients (NCT04256421) [439] 
(Table 3) (Fig. 5).

•	  TIM3

TIM3 receptor is expressed in several types of cells, 
including T-cells, Tregs, B-cells, monocytes, DCs, NK 
cells, and macrophages [440–442]. Four ligands bind to 
TIM3: carcinoembryonic antigen cell adhesion mol-
ecule 1 (CEACAM1), high-mobility group protein B1 
(HMGB1), phosphatidyl serine (PtdSer), and galectin-9. 
These four ligands bind to TIM3 causing a negative 
regulation of T-cells [443, 444]. Enhanced TIM3 expres-
sion is linked to poor prognosis in ASTs [445], as well as 
hematological malignancies [446]; and consequently, its 
suppression leads to significant anticancer activity, espe-
cially in co-treatment with anti-PD-1 antibodies [447, 
448]. Over the last years, various antagonist antibodies 
of TIM3 have been produced and are currently being 
tested at early stage of clinical evaluation. Interestingly, 
in a phase 1 clinical trial (NCT02817633), cobolimab 
has demonstrated synergistic effects in co-administra-
tion with anti-PD-1 immunotherapy in AST patients, 
and in a phase 3 clinical trial (NCT04655976) is being 
tested in combination with dostarlimab and docetaxel 
in NSCLC patients progressing on previous anti-PD-L1 
therapy and chemotherapy. In the STIMULUS-MDS2 
phase 3 clinical trial (NCT04266301), MBG453 in 
combination with azacytidine aims to demonstrate 
the potential of this co-treatment to improve survival 
in leukemia and myelodysplastic syndromes (MDS) 
patients [449]. Several early phase clinical trials have 
begun to determine efficacy and safety of TIM3 inhibi-
tors including BMS-986258 both singly and in combi-
nation with the anti-PD-1 nivolumab (NCT03446040), 
INCAGN02390 monotherapy (NCT03652077) [50], and 
novel, first-in-class LY3321367 in co-treatment with 
anti-PD-L1 antibodies (NCT03099109) [450], in AST 
patients. A phase 1 clinical trial (NCT03489343) is also 
investigating Sym023 in ASTs or lymphoma patients. 
Early data of these aforesaid agents have displayed only 
modest anticancer activity, with manageable safety 
profile, and favorable pharmacokinetics and pharmaco-
dynamics. Therefore, TIM-3 blockade as potential can-
cer therapy warrants further investigation. It is worth 
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mentioning that recruitment related to three of eleven 
clinical trials using TIM-3 inhibitors in MDS and AML 
has been completed (NCT03946670, NCT04266301, and 
NCT03066648). In the American Society of Hematology 
(ASH) annual meeting 2022, first data from the STIMU-
LUS-MDS1 phase 2 clinical study (NCT03946670), using 
combination of MBG453 and hypomethylating agent in 
MDS patients who were unsuitable for hematopoietic 
stem cell transplantation or intensive chemotherapy at 
screening, have been reported. Interestingly, the com-
plete response (CR) is higher after MBG453 plus hypo-
methylating agent (21.5%) compared to placebo plus 
hypomethylating agent (17.7%); and the safety profile is 
favorable [451, 452]. Besides, using the same aforemen-
tioned co-treatment in MDS patients, an ongoing STIM-
ULUS-MDS2 phase 3 clinical trial (NCT04266301) [449], 
and another STIMULUS MDS-US phase 2 clinical study 
(NCT04878432) are underway (Table 3) (Fig. 5).

•	  LAG-3

LAG-3 is expressed in activated CD8+ T-cells, acti-
vated CD4+ T-cells, Tregs, B-cells, pDCs, and dis-
tinct subgroups of NK cells [453–455]. LAG-3 binds 
to stable MHC-II, as CD4 does, and to other ligands 
including: fibrinogen-like protein 1 (FGL1), liver sinu-
soidal endothelial cell lectin (LSECtin), galectin-3, and 
α-synuclein fibrils. Its expression is induced after con-
tinuous exposure to antigen, as occurs during chronic 
infection or cancer, and is associated with T-cell 
exhaustion [440, 456]. The infiltration of LAG3+ cells 
into the TME is related to poor prognosis and tumor 
progression in several cancers, such as NSCLC, RCC, 
and breast cancer [50]. In several preclinical mouse 
models, a robust anti-tumor effect has been observed 
after the co-blockade of LAG-3 and PD-1. This syner-
gistic anti-tumor effect might result from the distinct 
mechanisms of action and expression profiles of these 
two molecules. It could also be due to the fact that 
single-agent checkpoint suppression in the TME can 
result in a counterbalanced upregulation of another/
other different checkpoint molecule/s [457]. Hence, the 
combination of PD-1 blockade and LAG-3 suppression 
determines synergistic decrease of Tregs and augmen-
tation of CD8+ T-cell cytotoxicity, therefore leading to 
cancer growth inhibition [458]. These data emphasize 
that LAG-3, as well as PD-1, contribute to immune-
escape mechanisms, supporting this co-treatment as 
a promising tumor immunotherapy [459, 460]. Based 
on preclinical studies, several agents have been devel-
oped to block LAG3 signaling, including relatlimab, 
fianlimab, LAG525, IMP321, and FS118. The potency 

of these drugs is presently under evaluation in vari-
ous clinical studies, either singly or in co-treatment, 
usually employing anti-PD-1 and/or anti-PD-L1 neu-
tralizing antibodies in advanced solid tumor patients 
(NCT03459222, NCT03642067, NCT05608291, 
NCT05352672, NCT03625323 and NCT03440437). In 
a recent phase 1/phase 2 clinical trial (NCT02460224), 
the combination of LAG525 and anti-PD-1 spartali-
zumab showed modest anticancer activity [2% CR, 8% 
partial response (PR), and 6.6% stable disease (SD) for 6 
months] and favorable safety profile, in advanced malig-
nancies patients [461]. These antibodies mainly sup-
press the LAG-3-MHC-II interaction [170], although 
this mechanism of action is not thoroughly understood. 
In the RELATIVITY-047 phase 2/phase 3 clinical trial 
(NCT03470922), the combination of the LAG-3 inhibi-
tor relatlimab and the anti-PD-1 nivolumab has demon-
strated higher benefit in term of PFS (47.7%) compared 
to PD-1 inhibition only (36%) in previously-untreated 
unresectable or metastatic melanoma patients. Though 
grade 3–4 treatment-related adverse events were more 
common among melanoma patients who received this 
combination than who received nivolumab singly, no 
new safety signals related to the co-treatment were 
observed, and thus the safety profile was favorable 
[462]. Besides, in the recent RELATIVITY-020 phase 1/
phase 2clinicaltrial (NCT01968109), the same combi-
nation, has displayed durable clinical anticancer activ-
ity and a manageable safety profile in heavily pretreated 
advanced melanoma patients who had progressed on 
anti-PD-1/PD-L1-including regimens. Particularly, 
ORR were 12% and PFS is 2.1 months in advanced 
melanoma patients who progressed during/within 
three months of an anti-PD-1/PD-L1-including regi-
mens; whereas ORR were 9.2% and PFS is 3.2 months in 
advanced melanoma patients who progressed during/
within three months of ≥ 1 anti-PD-1/PD-L1-including 
regimens [463]. As a result, the LAG-3-blocking anti-
body relatlimab in combination with the anti-PD-1 
nivolumab has demonstrated significant clinical ben-
efits in unresectable or metastatic melanoma patients, 
and consequently has received its first FDA approval 
for use in this cohort [464] (Table 3) (Figs. 4,  5).

•	  VISTA

Besides, VISTA using small-molecule VISTA/PD-L1 
antagonist CA-170 has demonstrated preclinical anti-
cancer efficacy [465], and has been investigated in a 
phase 1 clinical trial (NCT02812875) in advanced solid 
tumor and lymphoma patients; however, no results 
have been reported (Table 1a).
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•	  OX40 and ICOS

Other immune modulatory molecules are c0-stimulatory 
agents. The targets include OX40 using agonist antibody 
MOXR0916 (NCT02219724), and ICOS using agonist 
antibody vopratelimab (NCT02904226), which have 
shown favorable safety profile and evidence of tumor 
immune activation, in advanced solid tumor patients 
[466, 467] (Table 3) (Fig. 5). Overall, ICIs (targeting PD-1, 
CTLA-4, TIGIT, TIM-3, LAG-3, VISTA) and co-stimu-
latory agents (OX40, ICOS) have demonstrated substan-
tial clinical efficacy, resulting in durable responses and 
improved survival in cancers such as melanoma, lung 
cancer, and renal cell carcinoma. However, challenges 
include a significant proportion of patients who do not 
respond, as well as severe immune-related adverse events 
(irAEs) such as colitis, hepatitis, and endocrinopathies. 
In addition, some of these agents despite showing ther-
apeutic efficacy in preclinical models failed in clinical 
settings in part due to the clinical trial design and thera-
peutic regimens which have been tested in clinic. Future 
research should prioritize developing robust biomark-
ers to predict which patients would benefit, optimizing 
combination therapies with other modalities to enhance 
efficacy and overcome resistance, and devising better 
management strategies for irAEs.

•	 Adoptive T-cell transfer

In the adoptive T-cell transfer (ACT) mature T-cell sub-
sets are infused into patients to augment immune sys-
tem-mediated selection and elimination of cancer cells, 
thereby preventing disease recurrence [468–473]. The 
ACT is performed by first isolating autologous T-cells 
from patients or allogenic T-cells from donors, and then 
ex vivo expansion and injection into patients [474–476]. 
Due to its significant benefits, ACT is now considered a 
potential valuable therapy in several cancers [477–483]. 
Infusion of TILs in addition to lympho-conditioning 
and interleukins (ILs) have shown encouraging results 
in metastatic melanoma patients [484]. A recent rand-
omized phase 3 study (NCT02278887) comparing TILs 
to ipilimumab has shown significant benefit in favor of 
TILs in metastatic melanoma patients [485]. Addition-
ally, a recent phase 1 clinical study has displayed interest-
ing data based on durable responses in NSCLC patients 
[486]. Nevertheless, these therapies present some cave-
ats such as the time and cost related to ex  vivo genera-
tion of T-lymphocytes, and the contrariety to envision 
which patients can display a response [478]. Two primary 
approaches have been developed to genetically modify 
T-cells: 1) CAR T-cell therapy [487], and 2) TCR ther-
apy [488]. Both strategies are based on: a) manipulation 

of autologous ex  vivo T-cells to promote expression of 
receptors recognizing tumor-specific antigens (TSAs), 
and b) reintroduction of these T-cells into the patient to 
augment T-cell-induced killing of tumor cell; although 
their mechanism for antigen recognition are different 
(Fig. 6).

•	   CAR T-cell therapy

CAR T-cell therapy produces engineered T-cells that 
express synthetic TCRs specific to tumor antigens 
[489–495]. Interestingly, an advantage of CAR T-cells is 
that they can directly recognize target molecules on the 
surface of cancer cells, without the requirement of rec-
ognizing antigen fragments presented by MHC/HLA 
molecules. This is critical due to the fact that MHC/HLA 
molecules are commonly downregulated in cancer [128, 
496]. Notably, CAR T-cells have provided significant ben-
efit in several hematological tumors [497–499]. Indeed, 
numerous clinical studies using CAR T-cell therapy have 
demonstrated favorable outcomes [477], leading to FDA 
and the European Commission approval of different 
agents between 2017 and 2021 [500]. Besides, various 
CAR T-cell therapies are currently clinically investigated 
to treat different subtypes of multiple myeloma (MM), 
lymphoma, and leukemia, as well as other types of can-
cer [501]. Additionally, new approaches are being evalu-
ated for different markers on the tumor or in the TME, 
such as CAR T-cell therapy toward pan-cancer antigen 
B7-H3, which has already provided positive results in 
murine models of pediatric cancers [502]. Nonetheless, 
CAR T-cell therapies have not been significantly efficient 
for ASTs, such as neuroblastoma, since these cancers 
are notoriously heterogeneous, and their TME displays 
a higher complexity [503]. Engineering CAR T-cells can 
also be approached to operate on immune-suppressive 
TME and reinvigorate T-cells that are exhausted [504]. 
An example are the adjusted and updated second-gener-
ation armored CAR T-cells, expressing cytokines/ligands 
that significantly augment the overall efficacy [505–491]. 
In fact, these armored CAR T-cells, which are for exam-
ple engineered to generate IL-12, overcome Treg- and 
myeloid cell-mediated immunosuppression in the TME, 
trigger recruitment of myeloid cell, enhance antigen 
presentation [507], and endorse CD8+ T-cell cytolytic 
activity [508]. Even though using engineered T-cells is 
undoubtedly advantageous in various tumors [490], some 
obstacles need to be tackled in the near future, including 
selection of novel antigens, overcoming an immunosup-
pressive TME, and toxicity-related issues [509]. Indeed, 
disadvantages related to CAR T-cell therapy are mainly 
due to systemic inflammatory toxicity emerging in the 
host body [510–512]. However, more studies are focusing 
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on trying to tackle these problems associated with the 
use of CAR T-cell therapy. In addition, the development 
of novel imaging strategies to monitor the adoptively 
transferred T-cells in vivo may facilitate the development 
of better and safer treatments [513, 514] (Figure 6).

•	  TCR therapy

The target range of TCR T-cells is broad since they iden-
tify intra-cellular antigen fragments, as well as extra-
cellular antigen fragments only displayed by MHC/HLA 
molecules; and thus, differently from CAR T-cell therapy, 
this is an impediment for engineered TCR T-cells [515]. 
Based on theHLA-restriction of TCR-T cell therapies, it 
is improbable that pharmaceutical companies will face 
the considerable expense oftesting this therapy in cancer, 
since CAR-T cell therapies have already shown encour-
aging results in terms of efficacy. Thus, TCR-T cells are 
usually tested in solid tumors where the lack of appro-
priate surface targets limit CAR-T cell therapy. Besides, 
it is important to predict potential on-target/off-tumor 
toxicity in TCR-T cells due to their higher antigen sen-
sitivity in comparison to CAR-T cells [516–518]. Not-
withstanding TCR-based therapy has been worthwhile 
in preclinical models and several clinical studies, there 
is no TCR T-cell therapy approved by the FDA yet [488, 
492] (Fig. 6). Thus, ACT has achieved remarkable success 
especially in hematological malignancies by targeting 
specific tumor antigens, resulting in high response rates 
and long-term remissions. Despite this, complex manu-
facturing processes and severe toxicities like CRS pose 
significant challenges. In addition, the success in solid 
tumors has been limited probably due to the inability of 
T-cells to infiltrated tumors and the suppressive effect of 
the TME. Future research should continue to streamline 
production, identify new target antigens for solid tumors, 
overcome TME immune suppression, and develop strate-
gies to mitigate toxicities.

•	  Cancer vaccines

The cancer vaccine-induced activation of host T-cells 
occurs by exposing them to tumor-specific neo-anti-
gens. Cancer vaccine triggers anti-cancer immunity with 
tumor antigens, which can be mainly delivered as whole 
cells, peptides, and nucleic acids. Ideally, cancer vaccines 
overcome immune suppression in cancers, and con-
currently, activate both cellular immunity and humoral 
immunity [519]. Nonetheless, the main limitation associ-
ated with this personalized therapeutic strategy is due to 
the identification of tumor-specific neoantigens. Indeed, 
tumor cells obtained from biopsies have not shown a 
proper activation of the host immunity mainly due to 

insufficiency of tumor-specific neo-antigens. However, 
recent new bioinformatics tools and next-generation 
sequencing have facilitated the discovery of tumor neo-
antigens, which arise from somatic mutations of the can-
cer, and thus, are tumor specific. Due to the diversity of 
tumor neoepitopes between different individuals, devel-
oping personalized cancer vaccines may be warranted 
in the upcoming years [520]. Along these lines, a recent 
phase 2 trial (NCT03897881) has shown relapse-free 
survival benefit of a personalized RNA-based vaccine 
combined with pembrolizumab versus pembrolizumab 
monotherapy in stage IIIB to IV resected melanoma 
patients. In this trial, RNA sequences coding for up to 39 
neoantigens expressed by each patient’s tumor were engi-
neered in 6 to 8 weeks for 90% of the patients [521].

•	  Immune modulatory vaccines

The immune modulatory vaccines (IMVs) aim to reshape 
the TME to enhance the body’s immune response against 
cancer cells [522]. Unlike traditional cancer vaccines 
described above that stimulate T-cells to directly attack 
the tumor, the IMVs activate anti-regulatory T-cells (anti-
Tregs) that target the entirety of the TME [523, 524]. 
Anti-Tregs recognize tumor microenvironment antigens 
(TMAs) expressed by regulatory immune cells such as 
CAFs, Tregs, MDSCs, and TAMs in addition to tumor 
cells [305]. In the realm of cancer, the activation of anti-
Tregs serves a dual purpose by instigating a direct assault 
on tumor cells in addition to orchestrating a transforma-
tion of the TME, rendering it immunocompetent and 
hostile to tumors. Unlike other clinical strategies focused 
on the reversion of the immunosuppressive environment, 
IMVs exert effects that encompass both the elimination of 
suppressive cells (through the direct cytotoxicity induced 
by activated cytotoxic T-cells) and the reprogramming 
of suppressive cells (by stimulating the release of pro-
inflammatory cytokines), e.g., the conversion of M2-like 
TAMs into M1-like macrophages and the transformation 
of immunosuppressive CAFs into immunocompetent 
fibroblasts [525, 526]. Both in  vitro and in  vivo studies 
have substantiated that the activation of cytotoxic CD8+ 
anti-Tregs can result in the direct eradication of tar-
get cells, including cancer and immune cells [525–529]. 
Moreover, the secretion of pro-inflammatory cytokines 
from CD4+ anti-Tregs aim to transitioning the TME into 
an anti-tumor immune environment [530]. The signifi-
cance of integrating both CD4 and CD8 T-cell epitopes 
in IMVs has been evidenced in animal models of cancer 
[525, 531]. The targeting of non-transformed cells with 
consistent HLA expression may in addition induce HLA 
expression in malignant cells; thus, the inflammation 
induced by IMVs may elevate surface HLA expression 
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on tumors. Consequently, IMVs can even have an impact 
on tumors with low HLA expression. IMVs trigger de 
novo T-cell activation and, consequently, combining 
IMVs with ICIs that boost T-cell immunity is an attrac-
tive approach. In a recent phase 2 trial (NCT03047928), 
the synergistic application of an IMV based on indoleam-
ine 2,3-dioxygenase (IDO) and PD-L1 in conjunction 
with an anti-PD-1 antibody has demonstrated remark-
able clinical efficacy as a first-line treatment for patients 
with metastatic melanoma [532]. Notably, the objective 
response rate reached 80%, and the complete response 
rate was recently updated to 50% [533]. This trial has 
further shown a correlation between the induction of a 
pro-inflammatory TME and the re-polarization of innate 
immune cells, as evidenced by a notable increase in class 
II HLA expression [532]. Recently, the subsequent phase 
3 follow-up trial (NCT05155254) successfully completed 
recruitment involving 380 patients and is expected to 
reach PFS in the second half of 2025. Collectively, current 
studies of cancer vaccines have shown promising results 
in preclinical studies and early-phase clinical trials. How-
ever, their clinical success has been limited due to the 
heterogeneity of tumor antigens, immunosuppressive 
TME, and mechanisms of immune evasion by tumors. 
Future research should explore combination therapies 
to boost vaccine efficacy, develop personalized vaccines 
targeting neoantigens shared among patients, and inves-
tigate methods to counteract immune suppression and 
evasion mechanisms within the TME

Targeting B‑cells
B-cells play critical roles in the TME of several cancers 
[534–539]. Bruton’s tyrosine kinase (BTK) inhibitors are 
the most promising drugs targeting BCR signaling [540–
543]. Acalabrutinib and ibrutinib are the two major small 
molecule inhibitors targeting BCR [544, 545]. Acalabruti-
nib monotherapy has shown significant results in chronic 
lymphocytic leukemia (CLL), small lymphocytic leuke-
mia (SLL), and mantle cell lymphoma (MCL) patients. 
Besides, ibrutinib monotherapy or in combination with 
rituximab has shown significant clinical benefits in CLL, 
SLL, and Waldenström’s macroglobulinemia (WM) 
patients. Consequently, both inhibitors have been FDA-
approved for use in these cohorts [546–548] (Table  3) 
(Figs. 4, 5).

Targeting the innate immune system
Targeting NKcells
The CAR-NK immunotherapy has recently emerged as 
a valuable alternative to CAR T-cell therapy [549, 550]. 
In fact, CAR-NK cells are safer than CAR T-cell since 
they rarely elicit side effects including neurotoxicity and 
cytokine release syndrome [551, 552]. Besides, CAR-NK 

cells show no HLA-matching restriction and more avail-
ability from a variety of sources compared to CAR T-cells 
including the potential for off-the-shelf products read-
ily available for immediate clinical use [553]. In addi-
tion, CAR-NK cells, which release diverse cytokines (e.g. 
INF-γ and GM-CSF) compared to those secreted by CAR 
T-cells [(e.g. interferon alpha (TNF-α), IL-2, and IL-6] 
[554], are able to exert neutralization of cancer cells both 
CAR-dependently as well as CAR-independently [553]. 
Interestingly, a recent clinical study (NCT03056339) 
using umbilical cord blood-derived CAR-NK cells 
showed a clinical response of 72.7% and a CR of 63.6% 
in CLL or non-Hodgkin’s lymphoma (NHL) patients. 
Notably, administered CAR-NK cells caused no develop-
ment of neurotoxicity, cytokine release syndrome, graft-
versus-host disease, or major toxic effects [555]. Thus, 
CAR-NK cell therapy has great potential for future appli-
cations in cancer immunotherapy. However, clinical data 
are still limited, and challenges include the short lifespan 
and limited persistence of NK cells in the TME. Future 
research should focus on optimizing NK cell expansion 
and persistence, developing combination therapies to 
enhance NK cell activity, and conducting extensive clini-
cal trials to validate their efficacy and safety across vari-
ous cancers.

Targeting TAMs
Therapeutic strategies targeting TAMs in specific sites 
of organs have displayed promising results in preclinical 
models, although these cells are notoriously subject to 
tissue-specific imprinting [50, 556]. In fact, macrophage-
targeted therapies can a) inhibit the ability of TAMs to 
support tumor cell survival, and b) augment cross-pres-
entation to CD8+ T-cells [262, 557] (Fig. 7).

Drug‑mediated targeting of  TAMs  Several drugs have 
been in clinical evaluation to target TAM in the TME 
for different types of cancer including: 1) CCL2 inhibi-
tors and/or CC-chemokine receptor 2 (CCR2) inhibi-
tors, which evade recruiting of TAM within TME; 2) 
Colony-stimulating factor-1 receptor (CSF1R) inhibitors, 
to diminish TAMs in the TME; 3) treatment with co-stim-
ulatory molecules e.g. CD40, to increase the induction of 
T-cells; 4) CD47/SIRPα complex antagonists, which aug-
ment TAM-induced tumor cell phagocytosis; 5) trigger-
ing receptor expressed on myeloid cells 2 (TREM2) inhib-
itors; 6) PI3Kγ inhibitors to re-engage TAMs toward an 
anti-cancer phenotype.

 CCL2/CCR2 inhibitors
Chemokine release leads to augmentation of TAMs in 
the TME, resulting in the expansion of the tissue-res-
ident macrophage pool, monocyte recruitment, and 
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MDM increase within the cancer [558–560]. The tumor 
cell-mediated release of CCL2 can recruit both CCR2-
expressing Ly6Chi monocytes and tissue-resident mac-
rophages from the blood circulatory system extravasating 
into diverse cancer sites and then differentiating into 
TAMs [561]. The CCR2-dependent MDM recruitment 
is critical for breast cancer metastasis to lung and bone 
[562, 272]. In a phase 1b clinical trial (NCT01204996), 
the anti-CCL2 carlumab in combination with stand-
ard-of-care chemotherapy, showed favorable safety 
profile in advanced solid tumor patients although no 
long-term inhibition of serum CCL2 or significant 
cancer responses was detected [563]. The anti-CCR2 
monoclonal antibodies PF-04136309, MLN1202, and 
TAK-202 have been used in the clinic. In a phase 1 clini-
cal study (NCT01413022), PF-04136309 in co-admin-
istration with folinic acid + fluorouracil + irinotecan 

hydrochloride + oxaliplatin (FOLFIRINOX) chemother-
apy led to 49% tumor response, and 96% local tumor con-
trol, in advanced pancreatic adenocarcinoma patients. 
Notably, PF-04136309 monotherapy does not show the 
same effect, emphasizing the requirement for rational 
combinatorial strategies in the clinic [564]. Besides, in 
a phase 2 clinical trial (NCT02732938), PF-04136309 in 
combination with nab-paclitaxel and gemcitabine dis-
played favorable safety profile, and 49% objective tumor 
response, in advanced pancreatic cancer patients [565]. 
Nevertheless, the effective advantage of targeting CCL2/
CCR2 to treat cancer patients is still uncertain. In fact, 
there is still lack of significance in efficacy and unfavora-
ble safety profile to date, mainly due to body-mediated 
capability to counteract and/or neutralize suppression of 
CCL2/CCR2 signaling pathway by enhancing compen-
satory mechanism-induced CCL2 systemic levels [566]. 

Fig. 7  Therapeutic targeting of TAMs to enhance anti-cancer activity. Several strategies have been and are being developed to determine TAM 
depletion and/or reprogramming to increase anti-cancer immune activity. The major approaches currently used or being evaluated and indicated 
in the black boxes and comprise: 1) enhancing TAM-induced phagocytosis of tumor cells by inhibiting the “do not eat me” CD47/SIRPα pathway; 
2) reprogramming TAMs by augmenting their antigen presentation to T-cells via CD40 agonists, or by endorsing their re-education to anti-cancer 
phenotypes by inhibition of TREM2 or PI3Kγ; 3) inhibiting TAM recruitment to the TME through suppression of CCL2 or CCR2; 4) depleting 
or re-educating TAMs through inhibition of CSF1R signaling. This figure has been created with BioRender.com
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Table 4  Inhibitors, antibodies, recombinant fragment fusion proteins, recombinant cytokines, and cytokines targeting the innate 
immune system in the TME for cancer therapy used in clinical trials or approved by the FDA. Data has been collected from http://​www.​
fda.​gov, and http://​www.​clini​caltr​ials.​gov accessed in November 2023

Drugs targeting the innate immune system in the TME

Targeting TAMs

Targeted 
Molecule

Drug Name Type of Agent/s Mechanism of 
Action

Status Cancer Type/s NCTs References

CCL2 Carlumab Neutralizing anti‑
body

Limits monocyte 
and macrophage 
recruitment 
to the TME

Phase 1 ASTs NCT01204996 PMID: 24928772

CCR2 TAK-202 Neutralizing anti‑
bodies

Limit monocyte 
recruitment 
and infiltration 
into the TME

Phase 1 ASTs (MEL) NCT02723006 PMID: 37114134

PF-04136309 Phase 2 ASTs (PC) NCT02732938 PMID: 31297636

MLN1202 Phase 2 ASTs NCT01015560 PMID: 25688243

CSF1R Emactuzumab Neutralizing anti‑
bodies, small-mole‑
cule inhibitors

Reduce mac‑
rophage survival 
or lead to mac‑
rophage re-edu‑
cation

Phase 1 ASTs NCT01494688 PMID: 31114846

PLX7486 Phase 1 ASTs NCT01804530 PMID: 28716061

BLZ945 Phase 2 ASTs NCT02829723 PMID: 34027092

Edicotinib Phase 2 LEU (AML) NCT03557970 PMID: 33842370

ARRY-382 Phase 2 ASTs NCT02880371 PMID: 35302585

Pexidartinib Approved ASTs (TGCT) NCT02371369 PMID: 31229240

CD40 Sotigalimab Agonist antibodies Activate host APCs 
to induce significant 
clinical anticancer 
T-cell response

Phase 1 ASTs (PC) NCT03214250 PMID: 33387490

Chi Lob 7/4 Phase 1 ASTs NCT01561911 PMID: 29637478

CP-870,893 Phase 1 ASTs NCT00607048 PMID: 23483678

Dacetuzumab Phase 2 DLBCL NCT00435916 PMID: 24919462

rhuCD40L Phase 2 ASTs (HNSSC) N/A PMID: 11432896

CD47 CC-90002 Neutralizing anti‑
bodies

Interfere with rec‑
ognition of CD47 
by the SIRPα recep‑
tor on macrophages

Phase 1 LEU (AML), MDS NCT02641002 PMID: 34981142

ZL-1201 Phase 1 ASTs NCT04257617 PMID: 35860564

Magrolimab Phase 1 MDS NCT03248479 PMID: 36888930

SIRPα TTI-621 Recombinant frag‑
ment fusion proteins

Bind to CD47 
and preclude it 
from delivering 
an inhibitory “do 
not eat” signal 
to macrophages

Phase 2 DLBCL NCT05507541 PMID: 36578079

TTI-622 Phase 2 DLBCL NCT05507541 PMID: 36578079

TREM2 PY314 Neutralizing anti‑
body

Induces mac‑
rophage re-educa‑
tion into antitumoral 
phenotypes

Phase 1 ASTs NCT04691375 PMID: 38372949

PI3Kγ Eganelisib Small-molecule 
inhibitor

Induces mac‑
rophage re-educa‑
tion into antitumoral 
phenotypes

Phase 2 ASTs NCT02637531 PMID: 37000164

http://www.fda.gov
http://www.fda.gov
http://www.clinicaltrials.gov
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Additionally, increased TAM cell division and angiogen-
esis can possibly weaken CCL2/CCR2 immunotherapy-
mediated effects [567] (Table 4) (Fig. 5).

CSF1R inhibitors
Inhibition of CSF1R, which suppresses the receptor for 
the main survival and differentiation factor of TAM, is 
another valuable strategy to target TAMs [568–573]. The 
class III receptor tyrosine kinase CSF1R signaling occurs 
upon binding of its CSF1 and IL34 ligands, which are dif-
ferently expressed in specific tissues [574, 575]. Neutral-
izing antibodies and small-molecule inhibitors against 
CSF1R either determine re-education of TAMs into a 
pro-tumoricidal phenotype [576] or reduce intra-tumoral 
TAMs [577]. This strategy has led to significant antican-
cer activity in glioblastoma, breast cancer, and pancre-
atic cancer, as well as decrease breast-to-lung metastasis 
in preclinical models [50]. In addition, CSF1R inhibition 
has been investigated in combination with other agents 
in preclinical studies [569–579]. Besides, suppression of 
CSF1R enhances the efficacy of tyrosine kinase inhibitors 
and radiotherapy in glioblastoma models, through TAM 
re-education [580, 581]. Also, the potency of paclitaxel is 
augmented by CSF1R inhibitor-induced TAM reduction 
in breast cancer models [582]. Several CSF1R-inhibiting 
drugs including emactuzumab, PLX7486, BLZ945, edi-
cotinib, ARRY-382, and pexidartinib, have been tested 

in clinical studies, either singly or in combination with 
conventional therapies. Notably, numerous clinical tri-
als have displayed contrasting results depending on 
the type of cancer. A phase 2 study (NCT01349036) 
using the tyrosine kinase inhibitor pexidartinib mono-
therapy showed penetration of the blood-tumor barrier 
and favorable safety profile in recurrent glioblastoma 
patients. Nevertheless, this treatment did not improve 
PFS, PR and CR, although TAMs were reduced in tumor 
biopsies of these patients [583]. Conversely, in a phase 3 
study (NCT02371369), pexidartinib exhibited significant 
clinical benefit in advanced tenosynovial giant cell tumor 
(TGCT) patients defined by enhanced CSF1R and CSF1 
expression [584]; and thus, has gained FDA approval as 
an oral medication for use in this cohort [585]. Also, pex-
idartinib is being investigated in several tumors as mono-
therapy or combination therapy. There are possibly three 
main explanations, listed below, for these diverse clini-
cal results. 1) CSF1R is remarkably enhanced in TAMs, 
but it is also expressed in other cells such as MDSCs, 
tumor cells, and neurons. Thence, variation in potency 
of CSF1R inhibition is likewise due to additive effects on 
different types of cells, in tumor-dependent manner and/
or organ- dependent manner [50]. 2) Acquired resist-
ance to CSF1R inhibition can occur due to induced com-
pensation of the IGF1R/PI3K/AKT/mTOR transduction 
pathway, which leads to cancer recurrence, as shown in 

Table 4  (continued)

Targeting MDSCs

PDE-5 Tadalafil Small-molecule 
inhibitor

Inhibits MDSCs 
restoring T cell 
function and exert‑
ing anticancer 
effects

Phase 2 ASTs (HNSCC, MEL) NCT00843635 PMID: 25320361

Targeting DCs

GM-CSF GM-CSF Cytokines Boost anticancer 
immunity by pro‑
moting differentia‑
tion of DCs

Phase 2 ASTs (MEL) NCT00350597 PMID: 18591558

Sargramostim Phase 2 ASTs NCT04703426 PMID: 19483646

GM-CSF vaccines Phase 2 ASTs (BC), MM NCT00880464 
(ASTs), 
NCT01349569 
(MM)

PMID: 35482127 
(ASTs), PMID: 
34667029 (MM)

FLT3L CDX-301 Recombinant 
cytokines

Expansion of DCs 
and infiltration 
in the TME

Phase 2 ASTs NCT02839265 PMID: 29872569

Targeted Molecules: CCL2: CC-motif chemokine ligand 2; CCR2: CC-chemokine receptor 2; CD40: Cluster of differentiation 40; CD47: Cluster of differentiation 47 or 
integrin associated protein (IAP); CSF1R: Colony-stimulating factor-1 receptor; FLT3L: Fms-related tyrosine kinase 3 ligand; GM-CSF: Granulocyte-macrophage colony-
stimulating factor; PDE5: Phosphodiesterase 5; PI3K: Phosphoinositide 3-kinase; SIRPα: Signal regulatory protein α; TREM2: Triggering receptor expressed on myeloid 
cells 2. Cancer Types: AML: Acute Myeloid Leukemia; ASTs: Advanced Solid Tumors; BC: Breast Cancer; DLBCL: Diffuse Large B-Cell Lymphoma; HNSCC: Head and Neck 
Squamous Cell Carcinoma; LEU: Leukemia; MDS: Myelodysplastic syndrome; MEL: Melanoma; MM: Multiple myeloma; PC: Pancreatic Cancer; TGCT: Tenosynovial Giant 
Cell Tumor. In case drugs targeting the innate immune system in the TME for cancer therapy are being used in several ASTs, only a representative clinical trial (NCT) 
and its related reference (PMID) have been selected for (a) specific AST(s)
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preclinical studies of glioblastoma [586–588]. In line with 
this, co-inhibition of CSF1R and these aforementioned 
signaling networks significantly augments survival in 
mice. Thus, these approaches may be considered in clini-
cal trials, since the involvement of these signaling axes 
can also underlie CSF1R inhibitor resistance, especially 
in activated PI3K pathway-driven tumors [586]. 3) The 
functional heterogeneity of TAMs detected in various 
TME [589, 590] accounts for cancer-dependent effects of 
CSF1R suppression, resulting in TAM reduction versus 
TAM re-education, and thus, causing divergent efficacy 
of therapy [576]. Therefore, environmental signal modu-
lation including GM-CSF, IFNγ, and lipopolysaccharide, 
may be actuate to polarize TAMs to endorse an immune 
stimulation, thereby ultimately resulting in cancer regres-
sion [591] (Table 4) (Figs. 4, 5).

 CD40 agonists
The TNF receptor superfamily member CD40 is 
expressed on APC (e.g. DCs and TAMs), and thus is 
essential for induction and proliferation of these specific 
cells [592, 593]. CD40 critically regulates T-cell-depend-
ent anticancer immune response, and consequently 
interacts with CD4+ T-cell-expressing CD40 ligand 
(CD40L) [594]. Induction of CD40/CD40L signaling 
pathway upregulates MHC molecules and generates pro-
inflammatory cytokines important for priming T-cells 
[595, 596]. The agonistic antibodies toward CD40 pro-
mote generation of IFNγ, resulting in a tumoricidal phe-
notype reprogramming of TAMs, and leading to cancer 
regression in pancreatic cancer preclinical models and 
in pancreatic cancer patients [597]. Interestingly, this 
TAM reprogramming becomes more remarkable when 
a CD40 agonist and CSF1R inhibition are combined, 
before TAM depletion, resulting in a pro-inflammatory 
TME that bolsters a potent T-cell response [598]. CD40 
monoclonal agonistic antibodies are being tested in vari-
ous clinical trials of advanced solid tumor patients. In 
a phase 1 clinical trial (NCT00607048), CP-870,893 in 
combination with paclitaxel and carboplatin determined 
encouraging responses and a favorable safety profile 
in advanced solid tumor patients, providing a ration-
ale for phase 2 studies [599]. Besides, in a recent phase 
1b clinical trial (NCT03214250), the combination of 
CD40 antibody sotigalimab and chemotherapy (gemcit-
abine + nab-paclitaxel) with/without nivolumab, showed 
clinical activity and favorable safety profile in metastatic 
pancreatic adenocarcinoma patients. Thus, this co-treat-
ment regimen may replace chemotherapy-only standard 
of care in these patients if successfully confirmed in later 
phase trials [600]. In addition, a phase 2 clinical trial of 
rhuCD40L exhibited efficacy, with one patient enter-
ing into long-term complete remission, several patients 

reaching PR, and others showing only mild responses, 
in advanced head and neck squamous cell carcinoma 
(HNSCC) patients [601]. Dacetuzumab and Chi Lob 7/4 
were investigated in phase 2 for diffuse large B-cell lym-
phoma (DLBCL) patients (NCT00435916), and in phase 
1 for ASTs (NCT01561911), respectively; however, they 
only displayed modest activity. Thence, overall CD40 
agonistic antibodies have only shown moderate results as 
anticancer therapy (Table 4) (Fig. 5).

 CD47 antagonists
TAMs normally exert cancer-endorsing effects. However, 
TAMs may also inhibit cancer growth through phago-
cytosis of tumor cells and activation of diverse immune 
responses [602–603]. The main mechanism whereby the 
phagocytic functions of TAMs can be subverted in the 
TME is via CD47-SIRPα interactions [604]. The immune 
checkpoint signaling receptor CD47 is a “do not-eat me 
signal”. In normal cells, CD47 is constitutively expressed, 
whereas in tumor cells, CD47 is overexpressed, binding 
to myeloid inhibitory immunoreceptor SIRPα, primarily 
expressed in TAMs [605]. In macrophages, the CD47-
SIRPα binding triggers signaling that suppresses their 
phagocytic capability [606]. Thus, blockage of the CD47-
SIRPα interaction eliminates this repressive signal and 
enhances macrophage-induced tumor cell removal [607]. 
Interestingly, targeting the CD47-SIRPα signaling axis 
holds promise for cancer therapy toward innate immune 
checkpoints, as evidenced by significant data in preclini-
cal models [608, 609]. Indeed, the anti-CD47 antibody 
magrolimab has displayed significant anti-cancer activity 
in mouse pediatric brain cancer [610]. Additionally, in a 
recent phase 1b clinical trial (NCT03248479), the com-
bination of magrolimab and azacytidine, which increases 
expression of “eat-me signals”, showed promising efficacy 
and favorable safety profile in untreated higher-risk MDS 
patients, including those with TP53 mutations. Neverthe-
less, in a phase 1 clinical trial (NCT02641002), CC-90002 
monotherapy displayed no objective responses, in high-
risk MDS patients and relapsed/refractory AML patients 
[611]. Besides, the novel recombinant, humanized mono-
clonal antibody that specifically targets CD47, named 
ZL-1201, is presently being tested in a phase 1 dose esca-
lation clinical study to assess its safety in advanced solid 
tumor patients [612]. TTI-621 and TTI-622, two recom-
binant SIRPα-crystallizable fusion proteins, in combina-
tion with pembrolizumab are also being investigated in a 
phase 2 clinical trial (NCT05507541), in relapse/refrac-
tory DLBCL. Results from ongoing trials with magroli-
mab in AML patients will plausibly provide important 
information on the therapeutic potential of CD47 neu-
tralizing antibodies on cancer patients (Table 4) (Fig. 5).
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 TREM2 inhibitors
Suppression of TREM2 receptor is another approach 
whereby TAMs can be reprogrammed [613–616]. The 
Ig superfamily member TREM2 receptor interacts 
with adaptor proteins DNAX activation protein of 10 
kDa (DAP10) and DNAX activation protein of 12 kDa 
(DAP12), along with other extracellular ligands [617, 
618]. Combination of TREM2 deletion and PD-1 inhibi-
tion has been shown to decrease cancer growth in vari-
ous animal models. Indeed, TREM2 deficiency shifts 
TAMs from an immunosuppressive phenotype to an 
anti-cancer phenotype, leading to reduced cancer pro-
gression in mice [619, 620]. Interestingly, TAMs have 
been reported to express TREM2 in at least 200 human 
tumor cases, and its elevated level correlates with nega-
tive results in breast cancer and CRC [90]. Consequently, 
humanized monoclonal antibody PY314 is being pro-
duced in order to diminish TREM2-expressing TAMs. 
In a recent phase 1 clinical study (NCT04691375), PY314 
both as monotherapy or in combination with pembroli-
zumab, exhibited favorable safety profile in advanced 
solid tumor patients. A recommended dose for expansion 
has derived from these results, and enrollment in several 
prespecified tumors is ongoing [621] (Table 4) (Figure 5).

 PI3K inhibitors
The PI3K family members exert critical effects on the 
immune system [622, 623]. Indeed, PI3Kγ is an important 
regulator of TAM-induced immunosuppression [624–
626]. Suppression of PI3Kγ in TAMs reduces expression 
of IL10 and augments expression of MHC-II and IL-12, 
leading to immune cell recruitment, increased anti-can-
cer activity, and successive regression of cancer in mouse 
models [624]. Moreover, inhibition of PI3Kγ overcomes 
resistance to ICI, stimulating T-cell-induced regression 
of cancer [627]. Since PI3Kγ can switch immune suppres-
sion to immune stimulation, early phase clinical stud-
ies are presently testing the PI3Kγ inhibitor eganelisib 
either as monotherapy or in combination with ICI in sev-
eral tumors. In the MARIO-1 phase 1/phase 1b clinical 
trial (NCT02637531), the combination of eganelisib and 
PD-1 inhibitor nivolumab, has shown anti-cancer activ-
ity in advanced solid tumor patients, including those 
who had previously progressed on PD-1 and/or PD-L1 
inhibitors. Safety profile-based doses 30 mg/once daily 
and 40 mg/once daily of eganelisib, in co-treatment with 
PD-1 inhibitors and/or PD-L1 inhibitors, have been 
selected for phase 2 of this study [628]. In 2020 the FDA 
granted fast-track designation to a phase 2 clinical trial 
(NCT03961698) evaluating eganelisib in co-treatment 
with chemotherapy and ICI, for first-line treatment of 
advanced or metastatic TNBC patients (Table 4) (Fig. 5).

Collectively, targeting TAMs aims to reprogram these 
immunosuppressive cells within the TME to enhance 
anti-tumor immunity. Though preclinical studies related 
to CSF1R inhibition have shown potential, the results of 
clinical trials are conflicting and unsatisfactory, probably 
due to the complexity and heterogeneity of TAMs. Thus, 
future research should focus on identifying specific mark-
ers for different TAM subsets, developing more selective 
targeting approaches, selecting patients with high TAM 
infiltration, and combining TAM-targeted therapies with 
other treatments to improve overall efficacy.

Targeting MDSCs
In recent years, the heterogeneous population of imma-
ture MDSCs have also emerged as important cells to be 
targeted in cancer immunotherapy [292]. Notoriously, 
MDSCs endorse cancer growth by inhibiting the activ-
ity of NK-cells and T-cells, thence contributing to resist-
ance to immunotherapy [629]. Indeed, numerous studies 
have shown significant correspondence between negative 
response to ICI therapies and high number of MDSCs 
[630–61]. MDSCs also contribute to EMT activation and 
can be targeted through inhibition of their immunosup-
pressive activity [288, 61]. Since overexpression of ARG1 
and iNOS is one of the main mechanisms by which 
MDSCs induce anergy in NK cells and T-cells, PDE-5 
inhibitors such as sildenafil and tadalafil are known 
to downregulate the expression and activity of these 
enzymes and subsequently restore NK and T-cell func-
tions [632, 633]. Several mechanisms can target MDSCs 
[634]. Some of TAM-targeting agents currently under 
clinical investigation, including CSF1R inhibitors, can 
also contribute to interfering with MDSC recruitment 
into the tumor. Contrarily, the CSF1R inhibitor-related 
adaptive mechanisms of resistance engaging MDSCs 
can occur. Indeed, upon inhibition of CSF1R, CAFs 
release granulocyte-recruiting chemokines, resulting in 
enhanced cancer-stimulating MDSCs and enlargement 
of tumor in various animal models. Interestingly, CXCR2 
inhibitors can decrease these adaptive effects, whereas 
adding anti-PD-1 agent-base co-treatments can further 
augment these adaptive effects [635]. Phase 2 clinical 
trials with PDE-5-targeting tadalafil in melanoma and 
HNSCC have demonstrated reduction in MDSCs and 
Tregs as well as an increase in CD8+ T-cells, suggesting 
its ability to enhance anti-tumor immunity and improve 
clinical outcomes [636, 637]. The inhibition of MDSC 
migration to the tumor is another therapeutic strategy. 
Interestingly, the CXCR2 signaling has been found to be 
upregulated in human pancreatic cancer, particularly in 
MDSCs and neutrophils, but rarely in cancer cells. Since 
elevated levels of CCL2 and CCL5 in the TME recruit 
MDSCs through the chemokine receptor CXCR2, the use 
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of CXCR2-inhibiting peptides can promote T-cell infil-
tration, reduce metastasis and prolong survival in pan-
creatic cancer mouse models. Thus, the CXCR2 signaling 
can be considered an excellent therapeutic target in can-
cer [638] (Table 4) (Fig. 5).

Targeting neutrophils
Myeloid-derived cells such as neutrophils have also 
gained importance in recent years. Neutrophils also 
represent a potential therapeutic target in tumors since 
several studies have shown their tumor-promoting func-
tions especially in metastasis [639–642]. The role of neu-
trophils is ambiguous due to their pro-cancerous and 
anti-cancerous effects depending on the context [643]. 
However, various clinical studies employing agents asso-
ciated with the activation, recruitment, and functional 
response of neutrophils have shown encouraging results 
to improve the specific targeting of these specific myeloid 
cells [644–645].

Thus, current studies targeting MDSCs and neutro-
phils through strategies such as inhibiting their develop-
ment, blocking their immunosuppressive functions, and 
depleting their population, have shown promise in pre-
clinical models. However, the clinical success has been 
limited due to the heterogeneity and plasticity of MDSCs 
in different tumors. Future research should aim to better 
understand the mechanisms driving MDSC expansion 
and function, identify specific markers for targeting, and 
develop combination therapies to enhance the efficacy of 
MDSC-targeted treatments.

Targeting DCs
Highly heterogeneous APC DCs originate from human 
bone marrow CD34+ precursors, and possess a strong 
competence in processing and presenting antigens com-
pared to other APCs [646–299]. Importantly, the identi-
fication of each DC subtype, such as conventional/classic 
DCs (cDC) and plasmacytoid DCs (pDC) [647], and their 
trafficking or location during progression of tumor, have 
contributed to elucidate the actual role of DCs in cancer 
immunity, in order to establish valuable approaches for 
their manipulation [648]. The most critical DC-intrinsic 
characteristics to determine a potent and stable anti-
cancer response, are: 1) prime strong effector responses 
against cancer through tumor-associated antigen (TAA) 
cross-presentation to CD8+ cytotoxic T-cells; 2) high 
migratory capacity between lymphoid and non-lym-
phoid tissues; and 3) proper release of cytokines and 
chemokines to modulate immune response and T-cell 
homing [649]. Increased DC density, especially DCs 
within the TME has been shown to improve prognosis 
in breast, lung, and ovarian cancers. Thus, DCs can be 
considered as valuable targets for cancer immunotherapy 

[50, 650]. Nevertheless, the TME can depress important 
functions of DCs, such as the generation of CC-motif 
chemokine ligand 4 (CCL4) and/or CCL5 chemoattract-
ants, hindering DC recruitment to cancer sites, and sur-
vival signals [e.g. Fms-related tyrosine kinase 3 ligand 
(FLT3L)] necessary for differentiation and viability of 
DCs [651]. These caveats lead to incomplete activation of 
T-cells, and possibly endorsement of T-cell tolerance to 
TAAs [652] (Fig.  8).

Manipulation of DCs  DCs have been manipulated using 
several approaches, such as: 1) modulation of DC activity, 
proliferation, maturation, and survival through GM-CSF; 
2) administration of FLT3L to increase in vivo survival of 
circulating DCs and enhance subsequent DC trafficking 
to diverse tissues; and 3) production of DC vaccines to 
boost anti-cancer immunity involving manipulation of 
patient-derived ex vivo DCs to augment various features 
[50, 653].

•	 GM-CSF

The inflammatory cytokine GM-CSF, released by 
diverse cell types, including T-cells, B-cells, mac-
rophages, and mast cells, is responsible for activation and 
expansion of DCs, macrophages, and granulocytes [654, 
253]. In line with this, experiments using several cancer 
models have indicated that GM-CSF-induced effects on 
DCs can determine durable anti-cancer immunity [655]. 
Current early phase clinical trials are testing new poten-
tial GM-CSF-based approaches including: 1) intratu-
moral monotherapy by direct injection into metastatic 
lesions; 2) exposure as an adjuvant therapy via systemic 
administration; 3) co-treatment with ICI or chemother-
apy; 4) as GM-CSF-secreting vaccines; and 5) GM-CSF- 
secreting oncolytic viruses [50]. The administration of 
GM-CSF as monotherapy augments mature DCs and 
significantly improves the OS, in melanoma patients 
[656, 657]. Regarding GM-CSF-secreting vaccines, can-
cer cells have been successfully harvested from meta-
static or stage II-III breast cancer patients to develop 
autologous GM-CSF-secreting vaccines that determine 
coordinated immune responses with moderate toxicity 
(NCT00317603 and NCT00880464) [658]. Besides, in a 
phase 2 clinical study (NCT01349569), allogeneic MM 
GM-CSF-secreting vaccine with lenalidomide induced 
long-term immunity and lasting clinical responses in 
MM patients [659]. Nonetheless, other clinical tri-
als have not led to positive outcomes mainly due to the 
negative effects of GM-CSF when administered in high 
concentrations [660]. The limited potency of GM-CSF is 
also caused by its enhancement of immune-suppressive 
populations, such as MDSCs and Tregs, that suppress the 
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function of antigen-specific T-cells [661]. In melanoma 
patients, TVEC, a GM-CSF secreting oncolytic virus 
derived from herpes and administered by intra-tumor 
injection was granted FDA approval after demonstrating 
its superiority to GM-CSF subcutaneous injections [662] 
(Table 4) (Fig. 5).

•	 FLT3L

A crucial biochemical mechanism regulating DC 
development is the interaction between tyrosine kinase 
receptor fms like tyrosine kinase 3 (FLT3) and its ligand 
FLT3L [663, 664]. FLT3L exposure augments circulating 

DCs and their successive spread to distinct tissue in vivo. 
Thus, FLT3L increases the number of DC in the TME 
and also contributes to DC maturation, enhancing anti-
cancer T-cell priming [665, 666]. A phase 1 clinical trial 
(NCT00003431) has shown the immunogenicity and 
safety of recombinant FLT3L CDX-301 in advanced 
solid tumor patients; however, possible effects on cancer 
remission as a monotherapy are still being investigated. 
In a phase 3 clinical trial (NCT00006223), CDX-301 has 
been delivered as a single agent in acute myeloid leuke-
mia patients; but results have not been fully described. 
According to positive results obtained with murine mod-
els [667], in a phase 2 clinical trial (NCT02839265), the 

Fig. 8  Therapeutic targeting of DCs to increase anti-cancer activity. Different targeting strategies have been established to enhance 
DC-promoted T-cell priming, such as 1) GM-CSF administration-mediated endorsement of DC survival, proliferation, and differentiation; 2) FLT3L 
administration-induced DC expansion and maturation; and 3) ex vivo DC manipulation and administration in the form of a DC vaccine. The DC 
vaccines manipulate DCs ex vivo to augment their presentation capacity for specific TAAs in vivo, and are created through the following steps: 1) 
CD14+ monocytes or CD34+ hematopoietic stem and progenitor cells (HSPCs) are isolated from the blood of a cancer patient; 2) CD14+ monocytes 
or CD34+ HSPCs are differentiated into immature monocyte-derived dendritic cells (moDCs); 3) immature moDCs are subjected to TAA loading 
normally attained from tumor lysates; 4) DCs are genetically engineered to increment their cell-intrinsic features, e.g. cross-presentation, cytokine 
production, and lymph node migration, thereby augmenting their anticancer functions, and complete maturation of DC is accomplished by diverse 
maturation cocktails; finally, 5) TAA-loaded matured DCs are then injected back into the cancer patient, either subcutaneously or intradermally, 
resulting in the increase and improvement of cancer-specific immune responses. The types of DC vaccines can differ depending on cells used 
for ex vivo manipulation, strategy for TAA delivery, or activation status of DCs infused into the cancer patient. Ag: antigen. This figure has been 
created with BioRender.com
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combination of CDX-301 and stereotactic body radio-
therapy, has exhibited activity as systemic therapy and 
favorable safety, in advanced NSCLC patients [668]. 
Additionally, in a phase 2 clinical trial (NCT04491084), 
the triple combination of CDX-301, costimulatory mol-
ecule CD40, and stereotactic body radiotherapy, is cur-
rently under investigation in lung cancer patients. 
Understanding the contribution of specific subsets of 
DCs in acquiring and presenting TAAs, which is inform-
ative and important to properly interpret results, remain 
to be resolved in these aforementioned clinical trials 
(Table 4) (Fig. 5).

•	 DC vaccines

Tumor-specific immune responses can be obtained 
by directly injecting DC vaccines into patients [669– 
[294]. DC vaccines are classified into distinct categories 
depending on the strategy adopted for molecular modi-
fications and activation status of DCs or the delivery of 
TAAs, before being injected back into patients [673]. 
DC vaccines are produced through the manipulation of 
ex vivo patient-derived DCs to augment various proper-
ties, including: 1) increasing migration to lymph nodes; 
2) enhancing DC presentation efficiency for specific 
TAAs; 3) endorsing recruitment of specialized cells e.g. 
NK cells, lymphocytes, and supplementary DCs; and 4) 
overcoming cancer immunosuppression [649]. The DC 
vaccination-based therapy augments antigen-specific 
T-cell activity, as well as antigen-specific B-cell activity, 
and increase augmentation of CD8+ cytotoxic T-cells 
(CTLs) within the TME; and thus, represents a promising 
strategy. Indeed, clinical trials displaying SD, PR, and CR, 
with favorable safety profile, have been observed [50]. 
Nevertheless, at present there is still limited evidence of 
anti-cancer efficacy, plausibly due to the large usage of 
ex  vivo-based manipulation of monocyte-derived den-
dritic cells (moDCs) [674], which is not an ideal fount of 
DCs [675]. In fact, moDCs do not determine sufficient 
antigen presentation, cytokine production, and migra-
tion capacity, which are crucial features to overcome the 
immunosuppressive TME, and thus, leading to a suc-
cessful DC-based immunotherapy [676, 677]. Notably, 
recent studies have shown the existence of two diverse 
cDC subsets, cDC1 and cDC2 [678], with distinct meta-
bolic/functional characteristics, which modulate recruit-
ment/activation of immune effector cells through diverse 
mechanisms, both in mice and humans [679]. Thence, 
clarifying the contribution to cancer immunity and the 
capacity in presenting TAAs of individual DC subsets 
is important to improve targeted expansion of DCs and 
their anti-cancer functions to establish more efficient 
vaccines. Recently, the combination of DC vaccines with 

ICIs and chemotherapy, which may augment the anti-
cancer response, are being investigated in several clinical 
trials [519, 680] (Fig. 8).

Together, current strategies to target DCs include 
enhancing their antigen presentation capabilities, block-
ing inhibitory signals, and using DC-based vaccines to 
stimulate anti-tumor immunity. While DC-based thera-
pies have shown potential in preclinical and early clini-
cal studies, challenges remain in effectively activating 
and sustaining DC function within the immunosuppres-
sive TME. Future research should focus on optimizing 
DC-activating approaches, exploring different DC sub-
types functionally, and conducting larger clinical trials to 
establish the efficacy of DC-targeted therapies in various 
cancers.

Targeting stromal cells
Targeting CAFs
The targeting of stromal cells constantly represents an 
important research topic related to the TME field [681–
687]. CAFs are among the main cell types generating 
ECM molecules in the TME, supporting cancer growth 
through a variety of mechanisms [688]. Beside depositing 
ECM, CAFs also release matrix-remodeling enzymes, 
endorsing EMT, cancer invasion, metastasis, and therapy 
resistance [689]. Additionally, CAFs increase cancer pro-
gression through the secretion of multiple cytokines, 
exosomes, and growth factors [690, 691]. Notably, CAFs 
can also influence other components of the TME, includ-
ing the immune cells and vasculature. In fact, cytokines 
TGF-β, IL-6, and chemokine (C-X-C motif ) ligand 9 
(CXCL9) can also regulate T-cell responses, and CAF-
derived VEGF can contribute to angiogenesis [50]. Based 
on these results, targeting CAFs for anticancer therapy 
has become a priority for several studies. Currently, most 
anti-CAF therapies being developed target the fibroblast 
activation protein (FAP), which is overexpressed on the 
cell surface of CAFs in over 90% of cancers [692]. Besides, 
FAP-expressing CAFs have been related to immune-sup-
pression in diverse animal models as well as human sam-
ples [693, 694]. Various agents targeting FAP, such as 
RO6874281 (FAP-IL2v) and sibrotuzumab, are being 
evaluated in early phase clinical trials in several ASTs 
(NCT02627274, NCT02198274, and NCT03386721). An 
oral DNA vaccine targeting FAP has also been developed 
and successfully enhances CD8+ T cell-mediated killing 
of CAFs, leading to suppressed tumor growth and metas-
tasis in mice [695]. FAP-specific CAR T-cells have also 
been shown to effectively eliminate FAP+ CAFs and sig-
nificantly reduce tumor growth in lung, mesothelioma 
and pancreatic cancer mouse models [696–698]. Mono-
clonal antibodies against FAP such as sibrotuzumab have 
also been tested in a phase 1 study in NSCLC patients 
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and in a phase 2 study in CRC patients, showing favora-
ble safety profiles. However, these trials have been dis-
continued due to no significant responses [699, 700]. This 
low efficacy may be due to the lack of specificity of FAP 
for CAFs, given that FAP+ cells reside in other normal 
tissues and play important roles such as regulating tissue 
homeostasis in skeletal muscle and bone marrow [111]. 
Since the CAF function is activated by signaling pathways 
such as fibroblast growth factor receptor (FGFR), hedge-
hog (Hh), ROCK, platelet-derived growth factor receptor 
(PDGFR), NF-κB, TGF-β, and C-X-C chemokine recep-
tor type 4 (CXCR4), inhibitors which specifically target 
these axes are also under clinical investigation and evalu-
ation [43–702]. Besides, several studies have confirmed 
that dysregulation of major CAF markers fibroblast-spe-
cific protein 1 (FSP1), integrin alpha 11 (ITGA11), and 
integrin β-1 (ITGB1), is clearly related to cancer develop-
ment and progression of various solid tumors, implying 
that these molecules are prognostic biomarkers and ther-
apeutic targets for cancer treatment that warrants further 
investigation [701–704]. Interestingly, clinical trials using 
drugs targeting FGFR and hedgehog have reported pro-
ductive results. Alterations in the FGFR gene are frequent 
in urothelial carcinoma and are associated with lower 
sensitivity to immune interventions. Accordingly, the 
FGFR-targeting small molecule inhibitor erdafitinib 
monotherapy has demonstrated significant anti-cancer 
activity in metastatic or locally advanced FGFR-altered 
urothelial carcinoma patients, and therefore has been 
FDA-approved for use in this cohort [705]. There are 
some effective hedgehog-targeting small molecule inhibi-
tors such as vismodegib and sonidegib that have shown 
significant clinical benefits in basal cell carcinoma (BBC) 
patients, and consequently have been FDA-approved for 
use in this cohort [706]. Nevertheless, in a phase 2 clini-
cal trial (NCT01130142), the combination of saridegib, a 
potent and specific inhibitor of smoothened, a key signal-
ing transmembrane protein in the hedgehog pathway, 
and gemcitabine, failed to improve the clinical outcome 
compared to gemcitabine monotherapy, in metastatic 
pancreatic cancer patients [43]. Several clinical trials 
have displayed encouraging results by targeting PDGFR 
[707]. In particular, in a phase 2 clinical trial 
(NCT00076011), PDGFR inhibitor axitinib exhibited 
anticancer activity in metastatic RCC patients. The 
majority of patients had grade 3–4 treatment-related 
adverse events, which were manageable by dose modifi-
cation and/or supportive care [708]. Besides, in a phase 3 
clinical study (NCT02684006), axitinib is also being 
tested in combination with avelumab, versus sunitinib, in 
advanced RCC. Interestingly, another approach is vita-
min A- or vitamin D-mediated CAF reprogramming/
normalization. Accordingly, treatment using vitamin D 

analogue contributes to reverting CAFs to stellate cells 
and improves anti-cancer potency in pancreatic cancer 
preclinical models [709–711]. The vitamin D analogue 
paricalcitol is currently being tested in early phase clini-
cal studies in various ASTs. In particular, a phase 1 clini-
cal study is testing the co-treatment of paricalcitol and 
chemotherapy in metastatic breast cancer patients 
(NCT00637897); and a phase 2 clinical study is investi-
gating the triple co-administration of paricalcitol, gem-
citabine and nab-paclitaxel in metastatic pancreatic 
cancer patients (NCT03520790). Other targeted mole-
cules include TGF-β using the small-molecule inhibitor 
galunisertib in combination with protein kinase inhibitor 
sorafenib or chemoradiotherapy, which has shown 
favorable or acceptable safety profile and improved ORR, 
in advanced solid tumor patients (NCT01246986) 
(NCT02688712) [712, 713]; CXCR4 using the small-mol-
ecule inhibitor AMD3100 in co-treatment with granulo-
cyte colony-stimulating factor (G-CSF), which has 
determined stronger autologous hematopoietic stem cell 
mobilization, compared to G-CSF singly, in MM and 
NHL patients [714, 715]; ROCK using the small-molecule 
inhibitor AT13148 (NCT01585701), which exhibited 
favorable safety profile [716]; and vitamin A using the 
vitamin A metabolite ATRA, which displayed encourag-
ing results in combination with low-dose anti-angiogenic 
drug apatinib in recurrent/metastatic adenoid cystic car-
cinoma (ACC) (NCT04433169) [717], as well as in co-
treatment with chemotherapy or arsenic trioxide (ATO) 
in acute promyelocytic leukemia (APL) (NCT00482833) 
[718]. Besides, in a phase 2 clinical trial (NCT05345002), 
ATRA is being investigated in combination with the 
PD-1 inhibitor retifanlimab in recurrent isocitrate dehy-
drogenase (IDH)-mutant glioma patients. Further 
research into CAFs as a therapeutic target is still needed, 
which might include strategies to revert CAFs to their 
normal quiescent state, and targeting CAF-derived fac-
tors, in addition to directly depleting CAFs in the TME. 
In spite of recent progress in targeting CAFs, there is 
considerable lack of understanding regarding the biology 
of this cell type. A recent study has identified a greater 
number of somatic copy-number alterations in CRC 
patient sample-isolated CAFs in comparison to normal 
adjacent tissue-isolated fibroblasts, which undoubtedly 
complicates the targeted therapy toward these genetically 
unstable CAFs [719]. Moreover, the specifical target of 
CD10 positive and GPR77 positive CAFs augments sus-
ceptibility to chemotherapy in breast cancer preclinical 
models [720]. Furthermore, variation in metabolism of 
lipids in aged fibroblasts can induce therapy resistance in 
melanoma cells via FATP2 [721]. Thus, understanding 
the biology of different CAF subtypes, and their specific 
changes during cancer progression is crucial for a 



Page 39 of 96Glaviano et al. Journal of Hematology & Oncology            (2025) 18:6 	

successful design of subgroup-specifically targeted treat-
ments (Table 5) (Fig. 4) (Fig. 5) (Fig. 9). Moreover, future 
research should focus on identifying specific markers for 
different CAF subtypes, developing selective targeting 
approaches, and exploring combination therapies to 
improve outcomes.

Targeting other TME components
Targeting extracellular vesicles (ECVs)
ECVs include exosomes, microvesicles and apoptotic 
bodies [722]. ECVs have been used as diagnostic mark-
ers, as well as therapeutic applications [723–728].

Use of  ECVs as  diagnostic markers  Due to their high 
accessibility cancer-derived ECVs hold the potential to 
be used as diagnostic markers [729–734]. Indeed, ECVs 
have been shown to function in most steps of cancer 
progression and contain exclusive biomolecules such as 
nucleic acids, proteins, and lipids [735]. Given that the 
molecular content of ECVs is greatly dependent on the 
cell of origin they can provide important information 
regarding the pathological condition of ECV-generating 
cells. Cancer-derived ECV biomarkers have recently 
been investigated to establish novel strategies for can-
cer diagnosis and prognosis; albeit there is no complete 
understanding regarding the cancer-specific path-

Table 5  Inhibitors/agonists, antibodies, and vitamin A metabolites targeting CAFs in the TME for cancer therapy used in clinical trials 
or approved by the FDA

Data has been collected from http://​www.​fda.​gov, and http://​www.​clini​caltr​ials.​gov accessed in November 2023

Targeted Molecules: CXCR4: C-X-C chemokine receptor type 4; FAP, Fibroblast activation protein; FGFR, Fibroblast growth factor receptor; PDGFR, Platelet-derived 
growth factor receptor; ROCK, Rho-associated protein kinase; TGF-β, Transforming growth factor-β. Cancer Types: ACC​, Adenoid Cystic Carcinoma; APL: Acute 
Promyelocytic leukemia; ASTs: Advanced Solid Tumors; BCC: Basal Cell Carcinoma; CRC: Colorectal Cancer; LEU: Leukemia; MM: Multiple myeloma; NHL: Non-Hodgkin 
lymphomas; NSCLC: Non-Small Cell Lung Cancer; PC: Pancreatic Cancer; RCC: Renal Cell Carcinoma; UC: Urothelial Carcinoma. In case drugs targeting CAFs in the TME 
for cancer therapy are being used in several ASTs, only a representative clinical trial (NCT) and its related reference (PMID) have been selected for (a) specific AST(s)

Drugs targeting CAFs in the TME

Targeting CAFs

Targeted molecule Drug name Type of agent/s Mechanism of 
Action

Status Cancer Type/s NCTs References

FAP RO6874281 Blocking antibodies, 
Antibody-cytokine 
fusion proteins

Interfere with CAF 
function and pro‑
motes T-cell 
responses

Phase 2 ASTs NCT02627274 PMID: 38,630,781

Sibrotuzumab Phase 2 ASTs (CRC, NSCLC) NCT02198274 PMID: 12,624,517

TGFβ Galunisertib Small-molecule 
inhibitor, blocking 
antibody

Precludes CAF acti‑
vation and interferes 
with CAF signaling

Phase 2 ASTs NCT02688712 PMID: 35,952,709

FGFR Erdafitinib Small-molecule 
inhibitor

Prevents CAF activa‑
tion

Approved ASTs (UC) NCT03390504 PMID: 36,186,154

PDGFR Axitinib Small-molecule 
inhibitor

Interferes with CAF 
recruitment

Phase 2 ASTs (RCC) NCT00076011 PMID: 17,959,415

CXCR4 AMD3100 Small-molecule 
inhibitor

Interferes with CAF 
signaling

Phase 3 MM, NHL NCT00103662 
(MM), 
NCT02221492 
(NHL)

PMID: 19,363,221 
(MM), PMID: 
19,720,922 (NHL)

Hedgehog Saridegib Small-molecule 
inhibitors

Prevent and reduce 
CAF activation

Phase 2 ASTs (PC) NCT01130142 PMID: 31,035,664

Vismodegib Approved BCC NCT01367665 PMID: 25,981,813

sonidegib Approved ASTs (BCC) NCT01327053 PMID: 31,545,507

ROCK AT13148 Small-molecule 
inhibitor

Interferes with CAF 
function

Phase 1 ASTs NCT01585701 PMID: 32,616,501

Vitamin A ATRA​ Vitamin A metabo‑
lite

Induces CAF nor‑
malization

Phase 2 ASTs (ACC), LEU 
(APL)

NCT04433169 
(ACC), 
NCT00482833 
(LEU)

PMID: 34,091,189 
(ASTs), PMID: 
27,400,939 (LEU)

Vitamin D Paricalcitol Small-molecule 
agonist

Induces CAF nor‑
malization

Phase 2 ASTs (PC) NCT03520790 PMID: 36,299,300

http://www.fda.gov
http://www.clinicaltrials.gov
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ways regulating ECV biogenesis in tumor cells, which 
would certainly contribute to generating novel classes 
of cancer therapies [736]. Since the levels of ECVs and 
exosomes are associated with cancer stage, as well as 
other clinically-related parameters, numerous clinical 
trials are investigating ECVs as biomarkers. In other 
studies, the collection of cancer patient tissue biopsies 
has been incorporated with the TME determined by col-
lecting samples at baseline, after cycle 1 of neoadjuvant 
chemotherapy, and lastly during surgery [737]. Further 
investigation into the biogenesis, biomolecule content, 
and functions of cancer-derived ECV biomarkers is 
warranted. A comprehensive understanding of the ECV 
biology and heterogeneity will permit the establishment 
of better criteria for the use of optimal ECV sub-popu-
lations for diagnostics purposes.

Use of ECVs as therapeutic agents  Targeting the exoso-
mal secretion and uptake is another strategy against exo-
some mediated-EMT and metastasis [738–742]. Low pH 
has been shown to increase exosomal release and uptake 
by melanoma cells due to increased membrane fusion effi-
ciency, and this can be successfully inhibited when treated 
with proton pump inhibitors [743]. The small GTPase 
Rab27a has also been reported to regulate exosomal 
secretion thereby contributing to the modification of the 
TME and promoting tumor progression [744]. In line with 
this, silencing Rab27a in mammary carcinoma cells in a 
mouse model decreased exosomal secretion and reduced 
lung metastasis [745]. In addition, silencing Rab27a deter-
mined a reduction of exosome production by melanoma 
cells, as well as decreased cancer growth and metastasis, 
implying that this strategy can be considered a potential 

Fig. 9  Therapeutic targeting of CAFs to augment anti-cancer activity. CAFs can be targeted using various strategies, such as interfering with CAF 
activation using TGFβ and FBFR inhibitors, CAF signaling using TGFβ, CXCR4, FAP, ROCK signaling and Hedgehog signaling inhibitors, or CAF 
normalization using vitamin A metabolites and vitamin D analogues, which are either FDA-approved or currently being evaluated in clinical trials. 
CAFs: Cancer-associated fibroblasts; CXCR4: C-X-C chemokine receptor type 4; FAK: Focal adhesion kinase; FAP: Fibroblast activation protein; FGFR: 
Fibroblast growth factor receptor; FSP1: Fibroblast-specific protein 1 (FSP1); Hh: Hedgehog; ITGA11: Integrin alpha 11; ITGB1: Integrin β-1; LOX: Lysyl 
oxidases; PDGFR: Platelet-derived growth factor receptor; RTK: Receptor tyrosine kinase; TGF-β: Transforming growth factor-β. This figure has been 
created with BioRender.com
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therapeutic target [746]. Lastly, several studies have dem-
onstrated that heparin pre-treatment blocks exosomal 
uptake by oral squamous cell carcinoma [747] and urothe-
lial cells [748], inhibiting exosome-induced increase in 
migration and invasion. This is possibly due to competi-
tive inhibition with cell surface heparan sulfate proteogly-
cans (HSPGs), which are used for exosome internalization 
[749, 750]. These studies suggest that targeting different 
stages in the exosomal pathway is potentially a valuable 
strategy in preventing cancer spread and metastasis.

Though preclinical studies have shown promise in dis-
rupting the communication pathways mediated by ECVs, 
clinical translation is still in its infancy due to challenges 
in effectively targeting and delivering therapies to ECVs. 
Future research should focus on developing specific 
inhibitors of ECV biogenesis and uptake, understanding 
the cargo and functional roles of ECVs in various can-
cers, and conducting clinical trials to assess the therapeu-
tic potential of ECV-targeted interventions.

Targeting tumor vasculature
The tumor vasculature comprises leaky blood ves-
sels, characterized by impaired vascular perfusion and 
increased vascular permeability [751–755]. This abnor-
mal vessel structure results in inefficient oxygen and 
nutrient supply to tumor cells and metabolic waste 
removal [756, 757]. Coupled with the stagnant and vari-
able blood flow, these factors contribute to hypoxia and 
acidosis in the TME, in addition to elevated intersti-
tial fluid pressure [758–762]. Moreover, in certain solid 
tumors, hypoxia in the TME is worsened by the compres-
sive forces exerted on tumor vessels by CAFs and their 
production of ECM components [763, 754]. The hypoxic 
and acidic TME reduces the cytotoxic activity of tumor-
infiltrating effector T-cells, as well as facilitates the accu-
mulation of immunosuppressive cells such as MDSCs, 
TAMs, and Tregs and secretion of immunosuppressive 
factors such as VEGF, TGF-β, and IL-10 to promote angi-
ogenesis and aggravate vascular abnormalities [764–754]. 
In response to the hypoxic TME, signaling pathways such 
as HIF-1α are activated, subsequently inducing the EMT 
program [94]. Antiangiogenic therapies primarily tar-
get the endothelial cells of the tumor vasculature. These 
therapies induce vascular normalization, wherein imma-
ture tumor blood vessels are selectively regressed while 
the vascular integrity and function of mature vessels are 
enhanced [766–775] (Fig.  10).

Critical role of pericytes as a particular modulator of tumor 
angiogenesis and vascular integrity  Recent research has 
emphasized the critical role of pericytes as a particular 
modulator of tumor angiogenesis and vascular integrity. 
Pericytes support blood vessels by regulating vascular 

stabilization, permeability, and blood flow. In tumors, 
the interaction between pericytes and endothelial cells 
often becomes defective, leading to chaotic and dysfunc-
tional vasculature. This disruption is pivotal in creating a 
hypoxic and immunosuppressive tumor microenviron-
ment, contributing to cancer progression and therapeutic 
resistance [776]. Pericyte-targeting strategies, combined 
with traditional anti-VEGF therapies, are being explored 
to enhance therapeutic efficacy. However, evidence sug-
gests that the absence of pericytes does not significantly 
increase the sensitivity of tumor vasculature to vascular 
endothelial growth factor A (VEGFA) blockade, indicat-
ing a complex role of pericytes in tumor resistance mech-
anisms [777]. Innovative immunotherapeutic approaches 
are being developed to target antigens expressed by 
pericytes. One such strategy involves targeting the high 
molecular weight melanoma-associated antigen (HMW-
MAA), which is found on pericytes as well as on various 
tumor cells. Immunotherapies that target HMW-MAA 
have shown promise in reducing pericyte populations 
within the tumor vasculature, thereby impairing tumor 
growth and enhancing immune cell infiltration [778]. This 
approach leverages the immune system to disrupt the 
supportive role of pericytes in the TME, contributing to a 
more effective antitumor response. Thus, targeting tumor 
vasculature and pericytes simultaneously offers a more 
effective approach to disrupt the supportive tumor micro-
environment, potentially improving treatment responses 
and overcoming therapeutic resistance.

Current clinical approaches and challenges in antiangio‑
genic therapies for cancer treatment  Currently, most of 
the ongoing clinical studies focus on assessing the efficacy 
of combining antiangiogenic therapies with chemothera-
peutic drugs [779] or immunotherapeutic agents [780]. 
Bevacizumab, an anti-VEGFA inhibitor, is an antiangio-
genic agent widely used as the standard-of-care treatment 
for advanced cancers [781]. Bevacizumab has demon-
strated anticancer activity in various ASTs, either as mon-
otherapy or in combination with other drugs, and has 
received FDA approval for use in these patient cohorts 
[781–783]. Notably, there are currently over 1,000 regis-
tered clinical studies investigating the use of bevacizumab, 
often in combination with different immunotherapies, 
highlighting the importance of targeting tumor vascula-
ture in enhancing clinical response [50]. In a meta-analy-
sis of clinical trials, the combination of bevacizumab and 
chemotherapy showed beneficial effects, leading to 
improved ORR, PFS, and OS, in metastatic CRC patients, 
compared to chemotherapy alone [784]. However, in a 
phase 3 clinical trial (NCT00528567), the combination of 
bevacizumab with chemotherapy agent anthracycline 
and/or taxane determined no difference in OS among 
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TNBC patients [785]. Aflibercept, a fusion protein acting 
as a decoy receptor for placental growth factor, VEGFA, 
and vascular endothelial growth factor B (VEGFB) [786], 
has demonstrated significant clinical benefits when com-
bined with folinic acid + fluorouracil + irinotecan hydro-
chloride (FOLFIRI) chemotherapy in metastatic CRC 
patients, leading to FDA approval for use in this patient 
cohort [787]. Ramucirumab, a recombinant IgG1 mono-
clonal antibody specifically binding to vascular endothe-
lial growth factor receptor-2 (VEGFR-2) (anti-VEGFR-2) 
[788], has shown significant clinical benefits as monother-
apy in gastric cancer, HCC, CRC, and NSCLC patients, 
and thus has gained FDA approval [789–792]. In addition, 
in a phase 3 clinical study (NCT00777153), cediranib dis-
played clinical activity, although it did not prolong PFS as 
monotherapy or in combination with lomustine, in recur-
rent glioblastoma patients [793]. Interestingly, other stud-

ies have shown the therapeutic potential of targeting the 
urokinase-type plasminogen activator (uPA)/urokinase-
type plasminogen activator receptor (uPAR) system, 
which modulates VEGF-induced angiogenesis through 
co-internalization with integrin α5β1 [794, 795]. Indeed, 
in a phase 2, two-arm, double-blind, multicenter, rand-
omized study, combined treatment of uPA inhibitor 
WX-671 with capecitabine (NCT00615940) has shown an 
increase ORR and PFS in human epidermal growth factor 
receptor 2 (HER2)-negative metastatic breast cancer 
patients [796, 797]. Other FDA-approved antiangiogenic 
agents include the receptor tyrosine kinase (RTK) small-
molecule inhibitors, targeting a broader range of recep-
tors such as fibroblast growth factor (FGF), platelet-
derived growth factor (PDGF), and vascular endothelial 
growth factor receptors (VEGFRs). These inhibitors have 
shown promising results as monotherapies in clinical tri-

Fig. 10  Therapeutic targeting of tumor vasculature to enhance anticancer activity. Inhibition of VEGF and/or VEGFR is the most used 
antiangiogenic strategy accomplished with several FDA-approved agents, such as anti-VEGF and VEGF-TRAP (VEGF decoy receptors), and/
or VEGFR-specific antibodies and tyrosine kinase inhibitors (RTK inhibitors), respectively. Alternatively, ANG2-TIE2 inhibitors currently being tested 
in the clinic can also be used to promote antiangiogenesis. The drugs targeting tumor vasculature, either FDA-approved or being-evaluated 
at different stages of clinical development drugs, are referenced in the text. VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial 
growth factor receptor; ANG2: Angiopoietin-2; TIE2: TEK receptor tyrosine kinase; TKIs: Tyrosine kinase inhibitors. TME: Tumor microenvironment. This 
figure has been created with BioRender.com
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als compared to VEGFA inhibitors since they target both 
tumor vasculature and several dysregulated pathways in 
tumor cells [798]. Indeed, RTK-targeting inhibitors such 
as sorafenib monotherapy have exhibited significant clini-
cal benefits in RCC, HCC, and thyroid cancer patients, 
and have subsequently received FDA approval for use in 
these cohorts [799–801]. Furthermore, sunitinib mono-
therapy has displayed significant clinical benefits in gas-
trointestinal stromal tumors (GISTs), RCC, and pancre-
atic neuroendocrine tumor patients, leading to FDA 
approval for use in these cohorts [802, 803]. Additionally, 
pazopanib monotherapy has demonstrated significant 
clinical benefits in RCC and STS patients, resulting in 
FDA approval [804]. Besides, in a phase clinical trial 
(NCT00678392), axitinib determined a longer PFS com-
pared to sorafenib, in metastatic RCC patients, establish-
ing this RTK-targeting inhibitor as a second-line treat-
ment option in this specific cohort [805]. Alternative 
antiangiogenic approaches include angiopoietin-2 
(ANGPT2)-TEK receptor tyrosine kinase (TIE2) inhibi-
tors, such as MEDI3617, rebastinib, and trebananib, all of 
which are currently being investigated in clinical trials 
[806]. However, in a phase 3 clinical trial (NCT01493505), 
the co-treatment of trebananib, paclitaxel, carboplatin 
failed to demonstrate clinical benefit in ovarian cancer 
patients [807]. Additionally, various endothelial cell inhib-
itors, including endostatin, are currently undergoing clin-
ical evaluation in combination with various drugs [808]. 
Prominent examples for TME-directed treatments com-
bined with traditional chemotherapy are anti-angiogenic 
therapies. Their beneficial effects are primarily due to the 
restricted formation of new blood vessels within tumors 
[809], the normalization of existing malformed vessels, a 
decrease in interstitial fluid pressure, the alleviation of 
hypoxia, and the subsequent enhancement in drug deliv-
ery to the tumor site [810]. In fact, clinical trials using 
pan-VEGFR inhibitors have demonstrated vascular nor-
malization [811] and increased tumor vascular perfusion 
[812] in glioblastoma patients. Moreover, a single infusion 
of bevacizumab reduces interstitial fluid pressure and 
microvascular density in human CRC [813]. Additionally, 
nanoparticles, liposomes, ultrasound-mediated tech-
niques, and antibody–drug conjugates, represent other 
strategic approaches to improve drug delivery [814, 815]. 
Nevertheless, though antiangiogenic therapy has shown 
clinical benefits in some specific tumors, the overall 
results have not been as promising as initially expected. In 
fact, high doses of antiangiogenic agents can increase 
hypoxia and enhance invasiveness and metastasis of 
tumor cells. Therefore, judicious dosing of antiangiogenic 
therapy can support vascular normalization, leading to 
improved patient outcome [816]. Since continuous sup-
pression of VEGFA can result in compensatory upregula-

tion of other angiogenic factors, various approaches are 
being evaluated to achieve more durable vascular normal-
ization. Notably, a murinized monoclonal antibody that 
blocks both ANGPT2 and VEGFA has determined 
improvement of vascular stability and promotion of anti-
tumor immunity [817]. In the first-in-human phase 1 clin-
ical trial (NCT01688206), vanucizumab also demon-
strated promising clinical anticancer activity, accompanied 
with significant impact on tumor vascularity and an 
acceptable safety profile, in ASTs patients [818]. Other 
strategies of vasculature normalization are currently 
being evaluated in preclinical studies, including the sup-
pression of regulator of G protein (RGS5) signaling, the 
re-expression of specific semaphorin family members, 
and the use of endogenous antiangiogenic molecules that 
are often downregulated in cancer [50, 810]. Other modes 
of tumor vascularization include the vascular co-option, 
where tumor cells can hijack pre-existing host vasculature 
for their growth, vascular mimicry, and the trans-differen-
tiation of tumor cells into endothelial cells. A newly iden-
tified regulator implicated in vascular mimicry is the 
transmembrane glycoprotein receptor CD44 [819]. Con-
sequently, a recent first-in-human phase 1 clinical study 
(NCT01358903) testing the anti-CD44 monoclonal anti-
body RG7356 showed moderate clinical anticancer activ-
ity, with a 21% SD rate lasting a median of 12 weeks and an 
acceptable safety profile, in AST patients [820]. The het-
erogeneity of tumor vascular components must also be 
taken in consideration [821–823]. In line with this, a 
recent study discovered previously unknown phenotypes 
of tumor endothelial cells at the single-cell level in mouse 
lung tumor models and patient samples [824]. Providing 
answers to these interrogative studies will be essential for 
designing new treatments as alternatives to existing 
antiangiogenic therapies. The tumor vascular networks 
are significantly related to the efficacy of tumor immuno-
therapy since modulating tumor vasculature can enhance 
immune cell infiltration into tumors using various 
approaches. Vasculature-mediated CTL infiltration can 
be impaired by various mechanisms: 1) T-cell inhibition 
through the expression of suppressive molecules and 
receptors; 2) deregulation of cell-adhesion molecules 
including vascular adhesion molecule 1 (VCAM1) and 
intercellular adhesion molecule 1 (ICAM1), and 
chemokines; and 3) T-cell death activation by endothelial 
cell-mediated production of selective Fas ligand (FasL) 
[754, 825]. Thus, new strategies of combined antiangio-
genic therapy and immunotherapy have been investigated 
in animal models [817, 826] and are currently being evalu-
ated in ongoing clinical studies [827, 828], mostly with a 
primary focus on combinations of antiangiogenic thera-
pies with ICI approaches and vaccines [829]. Indeed, in a 
phase 3 clinical trial (NCT02853331), the combination of 
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the RTK inhibitor axitinib and the anti-PD-1 pembroli-
zumab has shown enhanced ORR and OS, as well as pro-
longed PFS, compared to the treatment of RTK inhibitor 
sunitinib alone, in advanced RCC patients [830]. Further-
more, in a phase 2 clinical trial (NCT00678119), the co-
treatment of sunitinib and autologous DC-based immu-
notherapy has exhibited significant anticancer activity in 
metastatic RCC patients [831] (Table  6) (Figure  4) (Fig-
ure  5). Despite the contradictory roles of tumor-associ-
ated lymphatic vessels and lymph node metastasis in can-
cer progression and distal metastasis, targeting the 
lymphatic vasculature, through inhibition of vascular 
endothelial growth factor C (VEGFC), vascular endothe-
lial growth factor D (VEGFD), or their receptor vascular 

endothelial growth factor receptor-3 (VEGFR-3), has also 
been considered a potential therapeutic approach for 
tumor control [832, 833]. Specifically, while lymphatic 
vessels are known to facilitate metastasis and foster an 
immunosuppressive TME by regulating immune cell 
functions, they are also critical for promoting antitumor 
immunity and enhancing immunotherapies [834, 835]. 
Further research is necessary to elucidate the clinical rel-
evance of lymphatic vessels in human cancer, the impact 
of lymph node metastasis, and the potential role of organ-
specific lymphatic vessels as a supportive premetastatic 
niche.

Table 6  Inhibitors and antibodies targeting tumor vasculature in the TME for cancer therapy used in clinical trials or approved by the 
FDA. Data has been collected from http://​www.​fda.​gov, and http://​www.​clini​caltr​ials.​gov accessed in November 2023

Targeted Molecules: ANG2-TIE2: Angiopoietin-2-TIE2; RTK: Receptor tyrosine kinase; uPAR: Urokinase-type plasminogen activator receptor; VEGF: Vascular endothelial 
growth factor; VEGFR: Vascular endothelial growth factor receptor. Cancer Types: ASTs: Advanced Solid Tumors; BC: Breast Cancer; CC: Cervical Cancer; CRC: Colorectal 
Cancer; FTC: Fallopian Tube Cancer; GC: Gastric Cancer; GIST: Gastrointestinal stromal tumor; GLI: Glioblastoma; HCC: Hepatocellular Carcinoma; NSCLC: Non-Small Cell 
Lung Cancer; OC: Ovarian Cancer; PC: Pancreatic Cancer; PPC: Primary Peritoneal Cancer; RCC: Renal Cell Carcinoma; STS: Soft Tissue Sarcoma; TC: Thyroid Cancer. In 
case drugs targeting tumor vasculature in the TME for cancer therapy are being used in several ASTs, only a representative clinical trial (NCT) and its related reference 
(PMID) have been selected for (a) specific AST(s)

Drugs targeting tumor vasculature in the TME

Targeting Tumor Vasculature

Targeted 
Molecule

Drug Name Type of Agent/s Mechanism of 
Action

Status Cancer Type/s NCTs References

VEGF/VEGFR Cediranib Neutralizing 
antibodies, fusion 
proteins (VEGF-
TRAP)

Antiangiogenic 
therapy

Phase 2 ASTs (GLI) NCT00777153 PMID: 23,940,216

Bevacizumab Approved ASTs (BC, CC, CRC, 
FTC, GLI, HCC, 
NSCLC, OC, PPC, 
RCC)

NCT03829410 PMID: 38,231,047

Aflibercept Approved ASTs (CRC) NCT00561470 PMID: 24,368,879

Ramucirumab Approved ASTs (CRC, GC, 
HCC, NSCLC)

NCT00917384 PMID: 24,094,768

uPAR WX-671 Small-molecule 
inhibitor

Antiangiogenic 
therapy

Phase 2 BC NCT00615940 PMID: 35,158,766

RTKs Axitinib Small-molecule 
inhibitors

Antiangiogenic 
therapy

Phase 3 ASTs (RCC) NCT00678392 PMID: 23,598,172

Sorafenib Approved ASTs (HCC, RCC, 
TC)

NCT00073307 PMID: 17,215,530

Sunitinib Approved ASTs (GIST, PC, 
RCC)

NCT00428597 PMID: 27,836,885

Pazopanib Approved ASTs (RCC, STS) NCT00720941 PMID: 23,964,934

ANG2–TIE2 MEDI3617 Neutralizing 
antibodies/

peptibodies, 
small-molecule

inhibitors Antiangiogenic 
therapy

Phase 1 ASTs NCT01248949 PMID: 29,559,563

Rebastinib Phase 2 ASTs NCT03601897 PMID: 34,440,616

Trebananib Phase 3 ASTs NCT01493505 PMID: 31,076,365

http://www.fda.gov
http://www.clinicaltrials.gov
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Improving drug delivery via  vessel normalization  The 
integrity of the vasculature plays an important role in 
drug delivery and therapeutic efficacy [836–843]. Leaky 
blood vessels can impair effective delivery of antican-
cer agents to tumor sites. Poor vascular perfusion can 
increase IFP within the tumor, creating a physical bar-
rier [844]. Moreover, the tumor ECM can collapse tumor 
microvessels, sequestering anticancer drugs and serving 
as can represent a principal physical obstacle [845]. The 
combination of antiangiogenic therapy and chemotherapy 
has been shown to yield beneficial effects by promoting 
vessel normalization and reducing interstitial fluid pres-
sure (IFP), thus enhancing drug delivery [810]. In line with 
this, a phase 2 clinical trial (NCT00035656) demonstrated 
that cediranib, a potent inhibitor of all three VEGFRs 
[vascular endothelial growth factor receptor-1 (VEGFR-
1), VEGFR-2, and VEGFR-3], induced vessel normaliza-
tion and improved tumor blood perfusion in glioblastoma 
patients [812]. Additionally, anti-VEGFA agent bevaci-
zumab has been shown to improve tumor blood perfusion 
accompanied with reduced microvascular density and IFP 
in human CRC [813].

Vascular‑targeted therapies in  combination with  immu‑
notherapies  Since neovascularization is closely related 
to cancer survival, progression, and metastasis [846, 847], 
approaches targeting the tumor vasculature, often in 
combination with immunotherapies, can offer therapeu-
tic advantages augmenting the efficacy of conventional 
antitumor treatments [848–851]. Glioblastoma blood ves-
sels are known to selectively express p21-activated kinase 
4 (PAK4) enzyme [852], a selective regulator of genetic 
reprogramming and abnormal vascularization. Interest-
ingly, Ma et  al. (2020) have shown that targeting PAK4 
enzyme can reprogram the vascular microenvironment 
and enhance CAR-T immunotherapy in glioblastoma, a 
solid tumor notoriously featured by abnormal vascular-
ity [853, 854] that generates an immune-inimical micro-
environment and confers resistance to immunotherapy 
[855–857]. As a result, PAK4 inhibition combined with 
CAR T-cell engineered to target the EGFR variant III 
(EGFRvIII) mutation in glioma cells has led to repro-
grammed vasculature, endorsing adhesion of immune 
cells and ability of engineered T-cells to successively pen-
etrate the brain, thereupon determining a potent antican-
cer response in preclinical models [858]. Hence, target-
ing PAK4-induced endothelial cells plasticity can possibly 
represent an important strategy to reprogram the vascular 
microenvironment and improve cancer immunotherapy.

Taken together, current anti-angiogenic therapies, 
such as VEGF inhibitors, have shown effectiveness in 
various cancers by inhibiting new blood vessel forma-
tion and modulating the TME. However, resistance to 

these therapies often develops, and some patients do not 
respond. Indeed, resistance to antiangiogenic therapies 
remain a challenge since tumor cells may adopt alter-
native modes of tumor vascularization, one of which is 
known as vasculogenic mimicry (VM) [781]. This pro-
cess, unlike angiogenesis which involves the formation 
of blood vessels lined by endothelial cells, is character-
ized by vessels lined with tumor cells [859]. The absence 
of endothelial cells, therefore, renders antiangiogenic 
therapeutic agents ineffective. The transmembrane gly-
coprotein receptor CD44 is a newly identified regulator 
implicated in VM [819]. Notably, a recent first-in-human 
phase 1 clinical study (NCT01358903) testing the anti-
CD44 monoclonal antibody RG7356 has shown moder-
ate clinical anticancer activity, with a 21% SD rate lasting 
a median of 12 weeks and an acceptable safety profile, 
in AST patients [820]. In relation to EMT, several stud-
ies have reported the upregulation of various EMT-TFs 
in VM-forming tumor cells [860, 861]. Consequently, 
targeting the TME and its downstream EMT activation 
pathways to inhibit VM formation emerges as a rational 
therapeutic strategy. For instance, the expression of ZEB1 
was found to be elevated in VM-positive CRC samples 
compared with VM‐negative ones, with lower E-cadherin 
and higher vimentin expression, which are indicative 
of EMT [860]. Moreover, TWIST1 nuclear expression 
was significantly associated with VM formation in HCC 
samples, and reduced VM formation was observed in 
TWIST1-knockdown HCC cells [861]. Furthermore, 
Ling et  al. (2011) reported that the expression of the 
cytokine TGF-β, which regulates EMT-TFs, was sig-
nificantly higher in VM-positive glioma cells than VM-
negative ones, and accordingly, the depletion of TGF-β 
significantly impaired VM formation [862]. In addi-
tion, anti-angiogenic therapies can cause significant side 
effects due to their impact on normal vasculature. Future 
research should focus on understanding the mechanisms 
of resistance, developing more specific drug delivery 
methods to avoid side effects, and identifying biomark-
ers to predict which patients will benefit most from anti-
angiogenic treatments.

Targeting ECM
The ECM exerts key roles in regulating TME and cancer 
[863–873]. Indeed, enhancing stiffness in surrounding 
tissue endorses EMT in cancer cells, leading to cancer 
invasiveness, stemness, and metastasis [874]. Addition-
ally, the expression of specific ECM-related genes (e.g. 
SPARCL1 and TWIST) is related to unfavorable progno-
sis and increased therapy resistance in numerous can-
cers [875–877]. Moreover, anomalous augmentation in 
the ECM can induce integrin and FAK signaling, which 
results in decreased apoptosis, augmented pro-survival 
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signaling, and enhanced chemoresistance [878–870]. 
Furthermore, abnormal increase of the ECM negatively 
influences treatment potency by determining a sort of 
physical blockade to various drugs [882]. Targeting of 
secreted ECM is an active area of development of the 
TME field. ECM has been mainly targeted through four 
main different approaches: 1) degrading the different 
components of the ECM; 2) directly inhibiting de novo 
synthesis of the ECM components; 3) repurposing of 
drugs with antifibrotic properties; and 4) targeting integ-
rins or the downstream effector FAK (Fig. 11).

Degrading the diverse components of the ECM  The deg-
radation of the diverse components of the ECM has been 
achieved by using hyaluronidases or collagenases allow-
ing augmented distribution of therapeutic agents [883]. 
There are inconsistent results on the use of PEGylated 

human hyaluronidase (PEGPH20), often in combina-
tion with other therapeutic drugs, in clinical studies in 
advanced solid tumor patients. In a phase 2 clinical trial 
(NCT01839487), the co-administration of PEGPH20 with 
gemcitabine and nab-paclitaxel-based chemotherapy 
showed significant improvement of PFS in pancreatic can-
cer patients. The hyaluronan-high cancer patients have 
displayed a higher ORR (45% versus 31%) and OS (11.5 
months versus 8.5 months) compared to the non-hyaluro-
nan-high cancer patients. The most frequent grade 3/grade 
4 undesirable effects after this co-treatment include mus-
cle spasms, neutropenia, and myalgia [884]. Nevertheless, 
a successive phase 3 clinical study (NCT02715804) using 
the same combination did not exhibit positive results in 
hyaluronic-high stage IV pancreatic cancer [885]; and in 
another phase 1b/phase 2 clinical trial (NCT01959139), 
the combination of PEGPH20 and FOLFIRINOX chemo-

Fig. 11  Therapeutic targeting of ECM to increase anti-cancer activity. The secreted ECM can be targeted with different strategies, such as interfering 
with integrin signaling using FAK inhibitors, destabilizing collagen network through inhibition of LOX enzymes using LOXL2 antibodies, degrading 
hyaluronan using hyaluronidases, and enhancing antifibrotic properties by reducing collagen synthesis and production using collagen inhibitors. 
CAFs: Cancer-associated fibroblasts; CXCR4: C-X-C chemokine receptor type 4; CTGF: Connective tissue growth factor; FAK: Focal adhesion kinase; 
FAP: Fibroblast activation protein; FGF: Fibroblast growth factor; LOX: Lysyl oxidases; TGF-β: transforming growth factor-β. This figure has been 
created with BioRender.com.
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therapy displayed unfavorable effects and enhanced tox-
icity in metastatic pancreatic adenocarcinoma patients 
[886] (Table 7) (Fig.  5).

Inhibiting de novo synthesis of  ECM components  The 
ECM component de novo synthesis can be directly sup-
pressed by inhibiting crucial ECM-producing signaling 
axes including hypoxia-inducible factor 1-α (HIF-1α) or 
TGF-β; or alternatively, by suppressing the modifying 
enzymes needed for secreting and producing the various 
ECM components. This can be achieved by targeting LOX 
enzymes, whose role is crucial for the stabilization of col-
lagen networks. However, the combination of antibody 
targeting lysyl oxidase homolog 2 (LOXL2) simtuzumab 
with FOLFIRI or gemcitabine has not shown significant 
improvement of clinical outcome in pancreatic cancer 
(NCT01472198) [887] and CRC (NCT01479465) [888] 
patients, respectively (Table 7) (Fig. 5).

Repurposing of drugs with antifibrotic properties  In can-
cer therapy, using agents already FDA-approved for other 
indications, known as drug repurposing, is an attractive 
challenging strategy that can potentially overcome numer-
ous issues related to de novo drug discovery, including 
dose-finding and safety profiles, thereby facilitating their 
clinical endorsement [889–892]. Hence, drug repurposing 
is inexpensive, time-efficient, and riskless in future clini-
cal trials compared to de novo drug development [893]. 
Repurposing of drugs with antifibrotic properties (e.g. 

losartan, pirfenidone, and metformin) to treat advanced 
solid tumor patients is another strategy being used. Inter-
estingly, in a phase 2 clinical trial (NCT01821729), the 
combination of losartan, FOLFIRINOX, and chemora-
diotherapy (fluorouracil or capecitabine) showed clinical 
benefits in pancreatic cancer patients [894]. However, in a 
phase 3 clinical trial (NCT01101438), adding metformin 
to standard breast cancer treatment did not determine sig-
nificant improvement of invasive disease-free survival in 
high-risk operable breast cancer patients [895]. There are 
other drug-repurposing drugs that can potentially be used 
as a co-treatment for pancreatic cancer, some of which 
are being investigated in clinical trials. Nonetheless, more 
studies are required to elucidate the efficacy and safety of 
several drug-repurposing agents [893] (Table 7) (Fig. 5).

Targeting integrins or  the  downstream effector 
FAK  Another approach for targeting secreted ECM is 
through integrins or the downstream effector FAK, since 
ECM components trigger integrin-induce signaling to 
activate cellular responses [896–881]. Multiple preclinical 
studies have demonstrated the use of antibodies and syn-
thetic blocking peptides against αvβ3, αvβ5 or β1 integrins 
which reduced tumor growth, angiogenesis and metasta-
sis. However, due to their lack of efficacy in clinical tri-
als these therapeutics are not present in the market yet. 
Possible reasons for this failure include the variable integ-
rin expression in tumors, redundancy of integrins, where 
blocking one integrin may be compensated for by another 

Table 7  Inhibitors, antibodies, and PEGylated enzymes targeting ECM in the TME for cancer therapy used in clinical trials. Data has 
been collected from http://​www.​fda.​gov, and http://​www.​clini​caltr​ials.​gov accessed in November 2023

Targeted Molecules: CTGF: Connective tissue growth factor; FAK: Focal adhesion kinase; HA: Hyaluronan; LOXL2: Lysyl oxidase like-2. Cancer Types: ASTs: Advanced Solid 
Tumors; BC: Breast Cancer; CRC: Colorectal Cancer; PC: Pancreatic Cancer. In case drugs targeting ECM in the TME for cancer therapy are being used in several ASTs, 
only a representative clinical trial (NCT) and its related reference (PMID) have been selected for (a) specific AST(s)

Drugs targeting ECM in the TME

Targeting ECM

Targeted Molecule Drug Name Type of Agent/s Mechanism of 
Action

Status Cancer Type/s NCTs References

HA PEGPH20 PEGylated enzyme Degradation of HA Phase 3 ASTs (PC) NCT02715804 PMID: 29,235,360

LOXL2 Simtuzumab Blocking antibody Destabilization 
of collagen

networks Phase 2 ASTs (CRC, PC) NCT01472198 PMID: 28,246,206

Collagen Pirfenidone Small-molecule 
inhibitors

Reduce collagen 
and HA

N/A ASTs NCT00020631 PMID: 38,561,001

Losartan Phase 2 ASTs (PC) NCT01821729 PMID: 31,145,418

Metformin Phase 3 ASTs (BC) NCT01101438 PMID: 35,608,580

FAK Defactinib Small-molecule 
inhibitors

Prevent integrin 
signaling

Phase 2 ASTs NCT01870609 PMID: 30,785,827

GSK-2256098 Phase 2 ASTs (PC) NCT02428270 PMID: 36,636,049

CTGF Pamrevlumab Blocking antibody Prevents integrin 
signaling

Phase 2 ASTs (PC) NCT02210559 PMID: 32,817,130

http://www.fda.gov
http://www.clinicaltrials.gov
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integrin, as well as some integrins having opposing roles 
during different stages of the disease, leading to variations 
in patient response to these drugs [902]. Other integrin-
targeting approaches have also been explored, such as 
the anti-αvβ3 protein, ProAgio, which binds outside the 
classical ligand-binding site of integrin αvβ3, inducing 
apoptosis by recruiting and activating caspase 8 [904]. 
ProAgio is currently being tested in a phase 1 clinical trial 
(NCT05085548) recruiting for participants with advanced 
solid tumor malignancies including pancreatic cancer 
[902]. Another ongoing phase 1 study (NCT04389632) is 
assessing the antibody–drug conjugate SGN-B6A, an inte-
grin β6-targeting antibody conjugated with antimitotic 
agent monomethyl auristatin E, in advanced solid tumor 
patients [905]. Additionally, screening of > 10,000 anti-
MM antibody clones identified the MM-specific antibody 
MMG49, which targeted the active conformer of integrin 
β7 expressed on MM cells [906]. MMG49-CAR T-cells 
(OPC-415) have since been developed and are currently 
being tested in a phase 2 trial (NCT04649073). Besides 
direct targeting of integrins, modulating integrin signaling 
by targeting downstream kinases have also been studied. 
For example, FAK inhibitor compounds such as defactinib 
[907] are currently being investigated in the clinic [908]. 
In a phase 1 clinical study (NCT02546531), a combina-
tion of defactinib, monoclonal antibody pembrolizumab, 
and gemcitabine, showed promising preliminary efficacy 
and favorable safety profile, in AST patients [909]. On the 
other hand, in the COMMAND-A phase 2 clinical trial 
(NCT01870609), co-treatment of defactinib and a first-
line chemotherapy did not determine clinical anti-cancer 
activity in malignant pleural mesothelioma patients [910]. 
Additionally, in a phase 2 clinical trial (NCT02428270), 
the FAK inhibitor GSK2256098 in combination with 
MEK inhibitor trametinib did not display significant anti-
tumor activity in advanced pancreatic cancer patients 
[911] (Table 7) (Fig. 5). Thus, these studies demonstrate 
the challenges involved in targeting the ECM. Indeed, the 
ECM regulates multiple signaling pathways and is formed 

by various components, making it difficult to be targeted 
without off-target effects and toxicities often detected in 
many clinical trials [912].

Targeting physicochemical characteristics in the TME
Even though not being a TME component per se, the 
physicochemical aspects including oxygenation status 
and pH are promising targets within the TME [913]. 
Hypoxic microenvironment plays a key role in EMT 
induction through its activation of HIF-1α [94, 914], 
which is a potential therapeutic target [915]. In a phase 
1 clinical trial (NCT00522652), the HIF-1α inhibitor 
PX-478 determined prolonged SD and favorable safety 
profile in advanced solid tumor patients, supporting the 
continued investigation of HIF-1α inhibition as a thera-
peutic target [916]. The antisense oligonucleotide EZN-
2968 can downregulate HIF-1α expression and thus is 
currently undergoing phase 1 clinical trials [917]. More-
over, the molecular chaperone HSP-90 and histone dea-
cetylases (HDAC) inhibitors can also promote HIF-1α 
degradation [918]. Furthermore, the chemotherapeutic 
agents doxorubicin and daunorubicin effectively inhibit 
HIF-1α transcriptional activity by blocking its bind-
ing to HREs in target genes [919]. While these studies 
have mostly examined the effect of these compounds 
on tumor growth and angiogenesis, it would be of inter-
est to investigate if they are also effective in inhibiting 
EMT and preventing metastasis. Acidity (i.e., decreased 
pH of the ECM) is a hallmark of cancer, and is a useful 
biomarker for targeting metabolically active cells in the 
TME, including tumor cells and activated macrophages 
[920]. The pH-(low)-insertion peptide (pHLIP), a pH-
sensing peptide, has been used to deliver cytotoxic pay-
loads such as amanitin, and the immune-stimulating 
cytokine IL-2, for targeted therapy of acidic tumors [921]
(Table 8) (Fig. 5).

Collectively, approaches targeting ECM include enzy-
matic degradation of ECM components, inhibition 
of ECM synthesis, and blocking interactions between 

Table 8  Inhibitors targeting hypoxia in the TME for cancer therapy used in clinical trials. Data has been collected from http://​www.​fda.​
gov, and http://​www.​clini​caltr​ials.​gov accessed in November 2023

Targeted Molecule: HIF1α: Hypoxia-inducible factor 1α. Cancer Types: ASTs: Advanced Solid Tumors. In case drugs targeting HIF-1α in the TME for cancer therapy are 
being used in several ASTs, only a representative clinical trial (NCT) and its related reference (PMID) have been selected for (a) specific AST(s)

Drugs targeting hypoxia in the TME

Targeting Hypoxia

Targeted Molecule Drug Name Type of Agent/s Mechanism of Action Status Cancer Type/s NCTs References

HIF-1α PX-478 Small-molecule inhibitor Inhibits HIF-1α leading 
to G2/M phase cell cycle 
arrest and increased 
apoptosis

Phase 1 ASTs NCT00522652 PMID: 18,729,192

http://www.fda.gov
http://www.fda.gov
http://www.clinicaltrials.gov
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ECM and tumor cells. Preclinical studies have shown 
potential in reducing tumor growth and enhancing the 
delivery and efficacy of other therapies. However, the 
clinical translation is challenging due to the complexity 
and diversity of ECM components in the TME. Future 
research should focus on identifying novel ECM targets, 
developing specific inhibitors, and conducting large pop-
ulation-based clinical trials to evaluate the safety and effi-
cacy of ECM-targeted therapies.

Targeting the gut microbiome
Several recent studies have demonstrated the importance 
of gastrointestinal microbiota in tumor development and 
regulation of therapeutic response. The gut microbiota, 
an intricate community of microorganisms residing in 
the gastrointestinal tract, significantly influences the 
host’s immune system and metabolism, thereby impact-
ing cancer progression and treatment outcomes [922–
925]. Specific microbial compositions have been 
associated with various types of cancer, indicating that 
the microbiome could serve both as biomarker and ther-
apeutic target [926–929]. Emerging evidence suggests 
that the gut microbiome significantly influences EMT by 
modulating various signaling pathways and immune 
responses within the TME [928]. For example, beneficial 
bacterial species such as Akkermansia muciniphila and 
Bifidobacterium have been related to improved responses 
to ICIs including anti-PD-1 and anti-CTLA-4 therapies. 
These bacteria are believed to enhance anti-tumor immu-
nity by promoting the maturation of DCs and increasing 
the production of pro-inflammatory cytokines, which in 
turn activate cytotoxic T-cells to target tumor cells [930]. 
Accordingly, in a recent phase 1 clinical study, the combi-
nation of fecal microbiota transplantation and re-induc-
tion of anti-PD-1 therapy exhibited positive responses in 
immunotherapy-refractory melanoma patients [931, 
932]. This approach created an immune environment 
within the TME that is less conducive to EMT, thereby 
reducing the likelihood of metastasis. Conversely, an 
imbalance in the gut microbiome, known as dysbiosis, 
can foster a pro-tumorigenic TME that promotes EMT 
and cancer progression. Dysbiosis is often characterized 
by the overgrowth of pathogenic bacteria such as Fuso‑
bacterium nucleatum, which has been associated with 
increased production of pro-inflammatory cytokines like 
IL-6 and TNF-α. These cytokines activate key signaling 
pathways such as STAT3 and NF-κB, which are known to 
induce EMT by downregulating epithelial markers (e.g. 
E-cadherin) and upregulating mesenchymal markers (e.g. 
N-cadherin and vimentin) [933]. This shift towards a 
mesenchymal phenotype enhances the invasive and met-
astatic potential of cancer cells, underscoring the critical 
role of the gut microbiome in modulating EMT within 

the TME. The gut microbiome influences EMT through 
several interconnected mechanisms that involve immune 
modulation, metabolic regulation, and direct interaction 
with cancer cells. The interaction between gut microbiota 
and the immune system is particularly crucial since it 
modulates inflammation and immune responses, both of 
which are integral to cancer progression and therapeutic 
outcomes. Certain bacterial species can influence the 
production of pro-inflammatory or anti-inflammatory 
cytokines, altering the immune landscape within the 
TME. For example, butyrate-producing bacteria like Fae‑
calibacterium prausnitzii have been shown to exert anti-
inflammatory effects by inducing Tregs and suppressing 
pro-inflammatory cytokines. This anti-inflammatory 
environment can help maintain epithelial integrity and 
prevent EMT [934]. Contrarily, pathogenic bacteria can 
induce chronic inflammation, a well-established driver of 
EMT. Chronic inflammation in the TME is often associ-
ated with the recruitment of MDSCs and TAMs, both of 
which secrete factors that promote EMT and tumor pro-
gression. For instance, TAMs can secrete TGF-β, a potent 
inducer of EMT that promotes the transition of cancer 
cells to a more invasive and metastatic phenotype [935, 
936]. Modulating the gut microbiome could therefore 
reduce inflammatory signals within the TME and inhibit 
EMT, potentially impeding cancer progression. The gut 
microbiome is a significant regulator of host metabolism, 
influencing tumor cells and the host’s metabolic state 
through the production of metabolites and direct interac-
tions with anticancer therapies. The most well-studied 
microbial metabolites are the short-chain fatty acids 
(SCFAs), such as butyrate, propionate, and acetate, which 
have known effects on cancer progression and EMT. In 
particular, butyrate has been extensively studied for its 
anticancer properties, especially in CRC cells [937]. 
Indeed, butyrate inhibits the proliferation of CRC cells 
through several mechanisms, including promoting 
autophagy-mediated degradation of β-catenin [938], 
inducing epigenetic changes [939], enhancing the expres-
sion of Toll-like receptor 4 (TLR4), and activating the 
MAPK and the NF-κB signaling pathways [940]. Addi-
tionally, butyrate triggers ferroptosis in CRC cells via the 
CD44/Solute Carrier Family 7 Member 11 (SLC7A11) 
pathway and significantly reduces the invasion ability of 
lung cancer cells, with considerable attenuation of the 
EMT, characterized by a decrease in the expression of 
mesenchymal marker and an increase of epithelial 
marker [941]. In contrast, other microbial metabolites, 
such as secondary bile acids and polyamines, have been 
implicated in promoting EMT and cancer progression. 
Secondary bile acids, produced by certain gut bacteria, 
can activate nuclear receptors like the farnesoid X recep-
tor (FXR) and the pregnane X receptor (PXR), both of 



Page 50 of 96Glaviano et al. Journal of Hematology & Oncology            (2025) 18:6 

which are involved in the progression of liver and gastro-
intestinal cancers. Activation of these receptors by bile 
acids can induce EMT by downregulating epithelial 
markers and upregulating mesenchymal markers, thereby 
enhancing the metastatic potential of cancer cells [942]. 
These metabolites not only directly impact the growth 
and proliferation of cancer cells but also modulate the 
immune environment to support anti-tumor activity. 
Moreover, the gut microbiome can influence the effec-
tiveness and toxicity of anticancer therapies. For instance, 
certain bacterial species can metabolize chemotherapeu-
tic drugs into toxic compounds, exacerbating side effects, 
while others can convert these drugs into less harmful 
substances, thereby reducing toxicity [943]. Studies have 
shown that microbiota can modulate the efficacy and 
toxicity of treatments like cyclophosphamide, an alkylat-
ing agent used in cancer therapy. Furthermore, gut bacte-
ria can influence the pharmacokinetics of drugs, altering 
their absorption, distribution, metabolism, and excretion, 
which impacts their overall effectiveness and safety pro-
file [944]. The gut microbiota, also regulate toxicity of 
numerous first-line/new therapies, such as chemother-
apy, immunotherapy, and stem cell transplants [945, 946]. 
In line with this, various studies have shown that specific 
gut microbiota signatures are related to greater immune 
cell infiltration into cancer, augmented systemic immu-
nity, and better response to ICI [947–950]. For instance, a 
microbiota enriched in Akkermansia muciniphila and 
Faecalibacterium prausnitzii has been associated with 
increased infiltration of cytotoxic CD8+ T-cells into the 
TME, promoting a robust anti-tumor immune response 
that enhances the efficacy of ICIs. This observation is 
supported by clinical data, where patients with these 
beneficial microbial profiles exhibit prolonged PFS and 
OS compared to those with dysbiotic microbiota [951]. 
Beyond immune modulation and metabolic regulation, 
certain gut bacteria can directly interact with cancer cells 
and influence their behavior. For instance, Fusobacterium 
nucleatum has been shown to adhere to CRC cells and 
promote their proliferation and invasion by activating the 
β-catenin signaling pathway. This direct interaction facili-
tates EMT and enhances the metastatic potential of these 
cancer cells. Such findings highlight the potential for tar-
geting specific bacterial species to disrupt these patho-
genic interactions and inhibit EMT [952]. Given the 
critical role of the gut microbiome in modulating the 
TME and EMT, therapeutic strategies aimed at manipu-
lating the microbiome are gaining traction as potential 
adjuncts to conventional cancer therapies. Probiotics, 
prebiotics, and fecal microbiota transplantation (FMT), 
the process of transferring fecal bacteria from a healthy 
donor to a patient, are being investigated in both 

preclinical and clinical studies for their potential to mod-
ify the gut microbiome, and influence TME and EMT 
processes, all with the aim of improving the effectiveness 
of cancer treatments. Probiotics, which are live beneficial 
bacteria, confer health benefits to the host when admin-
istered in adequate amounts. In the context of cancer 
therapy, probiotics are being explored for their ability to 
restore a healthy gut microbiome composition, thereby 
counteracting dysbiosis-induced EMT. For example, the 
administration of Lactobacillus rhamnosus has been 
shown to reduce gut inflammation and inhibit EMT in 
CRC models by enhancing the expression of tight junc-
tion proteins and reducing the expression of mesenchy-
mal markers [953]. Similarly, prebiotics, non-digestible 
fibers that promote the growth of beneficial gut bacteria, 
can enhance the production of SCFAs and suppress EMT. 
By modulating the gut microbiome, both probiotics and 
prebiotics offer promising approaches to mitigating EMT 
and reducing the risk of metastasis [954]. The use of anti-
biotics in cancer therapy presents a double-edged sword. 
While antibiotics can disrupt the gut microbiome and 
lead to dysbiosis, they can also be strategically employed 
to target specific pathogenic bacteria that promote EMT. 
For instance, antibiotics targeting Fusobacterium nuclea‑
tum have been shown to reduce tumor progression and 
metastasis in CRC models by decreasing the pro-inflam-
matory signaling that drives EMT [955]. However, the 
broad-spectrum effects of antibiotics on the gut microbi-
ome necessitate careful consideration and targeted appli-
cation to avoid unintended consequences. FMT has 
emerged as a promising approach to modulating the gut 
microbiome in cancer therapy. In a recent phase 1 clinical 
study, the combination of FMT and re-induction of anti-
PD-1 therapy demonstrated positive responses in immu-
notherapy-refractory melanoma patients, highlighting 
the potential of microbiome-targeting therapies [931]. 
These results suggest that modifying the gut microbiota 
can overcome resistance to ICIs and improve patient out-
comes. FMT may work by restoring a healthy microbi-
ome composition supporting a more effective immune 
response against tumors. For instance, FMT can increase 
the abundance of Akkermansia muciniphila and Bifido‑
bacterium brave, which have been related to heightened 
infiltration of cytotoxic T-cells into the tumor, thereby 
potentiating the effectiveness of ICIs [948, 956]. These 
results emphasize on the great potential of microbiome-
targeting therapy that will be clinically investigated in the 
next decade. By leveraging the complex interactions 
between the gut microbiota and the host immune system, 
it may be possible to develop novel therapies that 
improve outcomes for cancer patients across a range of 
treatment modalities.
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Cell metabolism in the TME
Cell metabolism in the TME is a complex and dynamic 
process that plays a crucial role in cancer progression 
[957–963]. Tumors can be viewed as dynamic pseudo-
organs, where various components such as cancer cells, 
stromal cells, immune cells, endothelial cells, and the 
ECM interact with each other and collaboratively cre-
ate a unique metabolic landscape that supports tumor 
growth and survival [964]. Within this intricate net-
work, cancer cells adapt their metabolic properties to 
the local environment, for example through symbiotic 
nutrient sharing, nutrient competition, and the utiliza-
tion of metabolites as signaling molecules [965]. While 
similar processes operate in normal physiology and 
development, in cancers, these metabolic interactions 
are hijacked to support the survival and growth of can-
cer cells. A comprehensive understanding of the TME 
can enhance our understanding of the tumor-immune 
cell interactions, thereby enabling prediction of clinical 
responses to immunotherapies by identifying predictive 
biomarkers. It is important to note that the cell metabo-
lism within the TME is different between a solid tumor 
and a hematological malignancy. The primary differences 
lie in the structural and systemic characteristics of both 
environments: the former has a complex and often hos-
tile tissue architecture with hypoxia, dense ECM and 
irregular vascularization while the latter relies less on 
physical structures and more on the interactions between 
the bloodstream and bone marrow niche.

Cell metabolism in the TME of solid tumors
The tumor ecosystem is a complex and heterogeneous 
patchwork of cancer cells and interconnected various 
host cells, including stromal cells, the endothelium, and 
the surrounding immune cells, all contributing to tumor 
proliferation and spread [647]. Tumor cells often main-
tain high mitotic and metabolic rates to support their 
growth, through molecular and physical interactions with 
a vascular network that they may have promoted them-
selves. Indeed, tumor cells can produce proangiogenic 
factors such as VEGF, TGF-β, FGF, and PDGF to induce 
rapid angiogenesis, albeit resulting in the formation 
of leaky, aberrant, and/or tortuous blood vessels ]966] 
(Fig. 12). For example, the activation of CAFs leads to the 
recruitment of immune cells through cytokine secretion, 
initiating ECM remodeling and transforming the organ 
architecture into a rigid fibrotic matrix with heightened 
interstitial pressure [967, 763]. This impedes the vascu-
lar function due to deregulated proliferation and growth 
factor release. Consequently, this results in inefficient 
nutrient delivery and waste removal caused by leaky ves-
sels, as well as poor T-cell infiltration due to the tortu-
ous shape of the new vessels and their reduced pericyte 

population [965] (Fig. 12). Additionally, these endothelial 
cells often express low levels of leukocyte adhesion mol-
ecules or recruiting chemokines, thus impeding their 
ability to recruit immune cells to exert their anti-tumor 
function [968). This abnormal tumor vasculature limits 
gas exchange and leads to hypoxia. Consequently, there 
is an increase in glycolytic activity, resulting in lactate 
accumulation, and the manifestation of the “Warburg 
phenotype”. Studies such as those by Brand et al. (2016) 
have demonstrated that this lactate buildup acidifies the 
TME and impairs the immune system’s ability to respond 
to tumor in melanoma mouse models [969]. At patho-
physiological concentrations, lactic acid induces apopto-
sis in T-cells and NK cells and interferes with regulation 
of nuclear factor of activated T-cells (NFAT), a tran-
scription factor involved in the transcriptional control 
of IFN-γ, thereby reducing IFN-γ production. Interest-
ingly, myeloid cells resist the lactate-induced cell death, 
resulting in elevated numbers of MDSCs which further 
promote tumor growth [970]. Moreover, the scarcity of 
nutrients in the TME creates a competitive environment 
where stromal cells, cancer cells, and immune cells vie for 
resources to sustain their rigorous anabolic demands and 
energy production needs. Immune cells are particularly 
disadvantaged in this competitive setting and the lack 
of nutrients almost invariably hinders their anti-tumor 
activity [971].

Cell metabolism in the TME of hematological malignancies
Though our understanding of the TME’s role in the 
progression and treatment of hematological malignan-
cies is not yet as advanced as it is for solid tumors, it is 
evident that the tumor niche is actively sustained and 
shaped by dynamic crosstalk between liquid cancer cells 
(lymphoma and leukemia) and the TME. The genesis of 
lymphoma is not merely the result of autonomous tumor 
processes but rather a combination of immune-escape 
mechanisms and promotion of tumor growth and pro-
liferating factors, much like what it is observed in solid 
tumors [972]. Despite considerable progress in utilizing 
the genetic anomalies of blood malignancies for thera-
peutic purposes, the clinical outcome is often tumor 
reduction and remission rather than tumor eradica-
tion and cure. Minimal residual disease and immuno-
surveillance are dependent on molecular processes and 
interactions within the TME, underscoring the need for 
therapeutic targets within the TME aimed at enhancing 
antitumor immunity through the recruitment of immune 
cells and inhibition of tumor-promoting signals. B-cell 
lymphomas, including CLL, MCL, follicular lymphoma 
(FL), and Hodgkin’s lymphoma (HL) are classic exam-
ples of sustained interactions between hematopoietic 
tumor cells and the supporting stroma [973]. The latter 
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exerts basic nurturing functions, including neoangiogen-
esis, remodeling of the ECM, and production of growth 
factors and cytokines. The supporting stroma also plays 
a major role in regulating immune escape mechanisms. 
Indeed, stromal cells create a state of immune cell polari-
zation within the TME by promoting tumor-associated 
immune cells such as TIMs, TAMs, TANs, MDSCs, and 
tumor associated dendritic cells (TADCs); all of which 
act to suppress the endogenous innate and adaptive anti-
tumor immune responses, making them prime targets for 
targeted therapies, especially TIMs and TAMs. In mouse 
experiments, antibodies against myeloid surface markers 

or murine models with myeloid cell ablation have shown 
that the depletion of immunosuppressive myeloid cells 
can impede tumor growth [974]. Comparable results 
were observed in CLL xenografts, where macrophage 
depletion through targeting of the CSF1 receptor led to 
leukemic cell death via the extrinsic apoptotic pathway 
and switched the TME to a more antitumor phenotype, 
thereby reducing tumor burden in the bone marrow 
[975]. Tregs play a significant role in suppressing the 
immune response against lymphomas. They achieve this 
primarily through the secretion of immunosuppressive 
factors and upregulation of the PD-L1 ligand (inhibitory 

Fig. 12  Metabolic interactions in the TME. The TME is represented in the center by a group of cancer cells coated with activated fibroblasts 
and surrounded by CAFs and immune cells. At the top: In hypoxic condition, TME promotes the production of angiogenic factors (VEGF, TGF-β, 
FGF and PDGF) to induce rapid angiogenesis, resulting in the formation of aberrant blood vessels with reduced pericyte coverage, low levels 
of leukocyte adhesion molecules, and low levels of T-cell recruiting cytokines, therefore impeding the recruitment of anti-tumor immune cells. 
On the left: under certain stimuli, CAFs are activated and acquire a pro-inflammatory signature with the expression of immunomodulatory 
molecules (TGF-β and PDL-1) and lead to ECM remodeling into a rigid fibrotic matrix. They also form a stromal matrix surrounding the tumor 
core through the desmoplastic reaction. On the right: Cancer cells drain energy from the surrounding immune cells by competing for nutrients 
and amino acids, stealing their mitochondria through nanotubes, and hiding from them using protective stromal matrix formed by CAFs which 
limits cytotoxic cell infiltration. CAF: CAFs: Cancer-associated fibroblasts; VEGF: Vascular endothelial growth factor; TGF-β: Transforming growth 
factor-β; FGF: Fibroblast growth factor; PDGF: Platelet-derived growth factor; PDL-1: Programmed death-ligand 1. This figure has been created 
with BioRender.com
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ligands) on tumor cells, which further hinders the 
potential of adoptive T-cell therapies [976]. Traditional 
sequencing methods, while informative, often mask the 
intricate cellular diversity in hematological malignancies 
and their dynamic interactions with TME. Single-cell 
sequencing (SCS) technologies have emerged as trans-
formative tools, offering unprecedented resolution to 
dissect these complexities at the single-cell level, and pro-
viding insights into the distinct cellular populations and 
their functional states within the TME. By dissecting the 
molecular profiles of various cell types, including cancer 
cells, stromal cells, immune cells, and endothelial cells, 
researchers can identify specific subpopulations and their 
unique roles in tumor progression and immune evasion 
[977]. There is a plethora of different modalities, with the 
main ones being single-cell DNA sequencing (scDNA-
seq), single-cell RNA sequencing (scRNA-seq), and the 
single-cell assay for transposase-accessible chromatin 
with sequencing (scATAC-seq). Among SCS techniques, 
scRNA-seq has gained prominence for its ability to pro-
file gene expression in individual cells. This granularity is 
crucial for understanding the diverse cellular subpopu-
lations, lineage trajectories, and functional/metabolic 
states within hematological malignancies [365]. The 
TME plays a pivotal role in these cancers, and scRNA-
seq can deconstruct its complexity by revealing cellular 
composition, intercellular communication, and underly-
ing molecular mechanisms that drive various cancer and 
immune phenotypes [978, 979]. Moreover, scRNA-seq 
can uncover the complex signaling pathways that differ-
ent cell types use to survive, grow, and communicate. By 
understanding these pathways, researchers can delve into 
how signaling circuitries drive the overall behavior of the 
tumor and its interactions with the TME. Furthermore, 
scRNA-seq can provide a detailed map of the molecu-
lar features of stromal cells, which are key components 
of the TME. With this information, scientists can cre-
ate models to study how these cells develop and identify 
potential targets for new treatments. While scRNA-seq 
offers a snapshot of gene expression, scATAC-seq grants 
insights into the regulatory landscape by mapping chro-
matin accessibility at the single-cell level [980]. By inte-
grating scRNA-seq and scATAC-seq, researchers can 
uncover the regulatory mechanisms that control gene 
expression in different cell types within the TME [365]. 
This combined analysis can identify key transcrip-
tion factors and epigenetic modifications that influence 
the behavior of malignant and immune cells, suggest-
ing potential therapeutic targets. Single-cell proteomics 
techniques, like mass cytometry (CyTOF) and single-cell 
western blotting, complement transcriptomic and epi-
genomic data by quantifying protein levels and modifi-
cations in individual cells. These methods validate and 

expand findings from scRNA-seq and scATAC-seq, pro-
viding a more comprehensive understanding of cellular 
functions and signaling pathways. Single-cell approaches 
have been used in CLL to investigate the role of the TME 
in progression and resistance. Purroy et al. (2022) applied 
scRNA-seq to characterize the circulating immune cells 
that coexist with CLL cells and found pronounced differ-
ences in immune cell composition between CLL samples 
and healthy donors, as well as a high number of differ-
entially expressed genes at the time of progression[981]. 
Similarly, Wang et  al. (2020) used this technology to 
investigate the effects of SF3B1 mutations, usually asso-
ciated with clinically aggressive disease, and found that 
cells carrying this mutation had significant changes in 
their cellular functions including apoptosis mechanisms, 
telomere maintenance and NOTCH signaling (downreg-
ulation of DTX1 and altered splicing of DVL2) [979, 982]. 
In addition to abovementioned single cell approaches, 
advanced in  vitro models like organoids and 3D tissue 
printers can be used to recreate the TME in the labora-
tory. These models can mimic the dynamic environment 
of the lymph nodes and bone marrow, which are criti-
cal sites in blood cancers [983]. By using these models, 
researchers can better understand how the TME inter-
acts and metabolically shapes tumor growth and resist-
ance to various therapies. This combined approach of 
using single cell sequencing and in  vitro models holds 
great promise for developing more effective and person-
alized treatments for hematological malignancies.

Cell metabolism in the TME and immunotherapy
Over the past decade, immunotherapy has been 
described as a “game-changer” in the treatment of can-
cer. Immunotherapeutic agents work by “taking the 
brakes off” the immune system and manipulating and/
or enhancing it to recognize and destroy tumor cells in 
both early- and advanced-stage patients [984]. As already 
described in chapter  4, the two most common types of 
immunotherapy strategies are ICIs and ACT. The ICIs 
block the receptor interactions between molecules intrin-
sically involved in T-cell regulation and function such as 
medications targeting the PD-1 and CTLA-4 antigens. 
On the other hand, ACTs utilize the host immune cells 
such as through via CAR-T or CAR-NK cells. While they 
have been successful in a subset of patients by showing 
long-term durable remissions [985], we still lack reliable 
biomarkers to better characterize the TME and poten-
tially predict patient outcomes and response to these 
therapies [986]. Given the growing use of ICIs in clini-
cal practice, the US FDA has approved the IHC assays to 
measure PD-L1 protein expression as a potential predic-
tive marker in the context of NSCLC [987, 988]. An initial 
study examined 39 NSCLC patients and compared the 



Page 54 of 96Glaviano et al. Journal of Hematology & Oncology            (2025) 18:6 

percentage of PD-L1 staining across four different assays. 
Though the assays demonstrated analytical and clinical 
comparability, disparities, and recurrent mis-classifi-
cation of PD-L1 status were still an issue. Furthermore, 
the use of PD-L1 as a biomarker has been rigorously 
debated due to conflicting data on its relevance. While 
many studies show an increase in clinical response with 
increased PD-L1 expression [989, 990], several others 
reported that patients with no PD-L1 also respond to 
ICIs [417, 991]. Tumors with the same histological stage, 
according to TNM Classification of Malignant Tumor 
staging, often have drastically different clinical outcomes 
[992]. This highlights the need for a better classification 
system that considers cellular and molecular components 
of the TME. For instance, a study on colorectal malig-
nancies revealed that T-cell infiltration provided a much 
better prognostic value than other traditional invasion 
criteria such as grade, staging, or presence of metasta-
sis [993]. This renewed interest in the type, density, and 
location of immune cells within the TME has led to the 
development of a scoring system based on the quantifica-
tion of CD3+ and CD8+ T-cells known as “immunoscore” 
[994, 995]. The immunoscores range from I0 to I4, with 
I0 referring to a low density of both cell types in the 
tumor center and invasive margin (“cold tumor”), and I4 
indicating a high density in both locations (“hot tumor”). 
Since the immunoscore is dependent on T-cell infiltra-
tion, any mechanism that affects this process, including 
PD-L1 expression and pre-existing antitumor immu-
nity, will have a direct or indirect impact on this score. 
Finally, gene-expression profiling of 130 frozen Hodgkin 
lymphoma samples found that a gene signature of TAMs 
was associated with primary treatment failure [996]. A 
subsequent analysis on an independent cohort of patients 
revealed a correlation between CD68+ macrophages and 
shortened PFS, as well as increased likelihood of relapse 
after autologous haematopoietic stem cell transplantation 
(HSCT), thereby showing the potential influence of the 
TME on the prognosis of hematological malignancies.

Ultimately, a comprehensive understanding of the cell 
metabolism within the TME, whether in solid tumors or 
hematological malignancies, provides a valuable oppor-
tunity to target specific processes identified through 
novel techniques such as sequencing. This, in turn, can 
be utilized pharmacologically through immunotherapy 
to better hinder the ability of cancer cells to survive and 
proliferate.

TME/EMT‑mediated therapeutic resistance
Despite significant advancements in cancer therapeu-
tics, therapeutic resistance remains a major contributor 
to cancer relapse and poor patient outcomes. Therapeu-
tic resistance can be categorized into two main types: 

intrinsic resistance and acquired/adaptive resistance. 
These two groups differ based on the origin of the resist-
ance. Intrinsic resistance is present within the cancer 
cells prior to treatment, i.e. the cancer cells are inherently 
resistant to the initial therapy. In contrast, acquired/
adaptive resistance develops in response to treatment. 
This section explores the roles of the TME and EMT in 
mediating resistance to chemotherapy, immunotherapy, 
radiotherapy, and targeted therapy. Collectively, these 
findings underscore the clinical potential of targeting 
the TME and the EMT program to improve patient out-
comes across these therapeutic modalities.

Intrinsic resistance
Chemotherapy
Emerging evidence suggest a correlation between EMT 
and chemoresistance of cancer cells. For instance, Snail 
was found to regulate the expression of ERCC1, a gene 
known to contribute to cisplatin resistance, in HNSCC 
cells. Accordingly, the overexpression of Snail in HNSCC 
cells promoted resistance to cisplatin, and the depletion 
of Snail attenuated cisplatin resistance [997]. Meanwhile, 
Snail-knockdown sensitized lung adenocarcinoma cells 
to cisplatin, possibly by activating the JNK/mitochondrial 
pathway, and in turn, enhancing cisplatin-induced apop-
tosis [998]. Snail has also been reported to confer sig-
nificant protection to pancreatic cancer cells against the 
chemotherapeutics 5-fluorouracil and gemcitabine [999]. 
Meanwhile, the overexpression of TWIST induced EMT 
of CRC cells and attenuated sensitivity to the chemother-
apeutic oxaliplatin [1000]. In addition, the downregula-
tion of ZEB1 promoted the sensitivity of MCL cells to 
the cytotoxic effect of doxorubicin, cytarabine and gem-
citabine. Interestingly, the study reported a positive cor-
relation between ZEB1 and the efflux transporters MRP1 
and MXR, which mediate increased doxorubicin resist-
ance; meanwhile, a negative correlation was observed 
between ZEB1 and the influx transporter CNT1, which is 
responsible for the cellular uptake of cytarabine and gem-
citabine [1001]. A critical feature of the TME is hypoxia, 
a condition of low oxygen tension prevalent in many solid 
tumors. Hypoxia has been shown to promote chemore-
sistance in various acute lymphoblastic leukemia (ALL) 
derived cell lines [1002]. This observed chemoresistance 
is believed to be driven by HIF-1α, an important regula-
tor of the cellular response to hypoxia, since its inhibition 
promotes chemosensitivity in ALL cells [1003]. Similarly, 
silencing HIF-1α promotes sensitivity to the chemo-
therapeutic melphalan in myeloma cells [1004]. TAMs 
and myofibroblasts were reported to support chem-
oresistance of pancreatic cancer cells to gemcitabine by 
secreting IGFs 1 and 2; in line with this, the blockade of 
insulin-like growth factor (IGF) sensitized pancreatic 
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tumors to gemcitabine [1005]. In addition, exosomes 
secreted by CAFs attenuate chemosensitivity, as reviewed 
by Li et al. (2021) [1006]. In ovarian cancer, CAF-secreted 
exosomal miR-98-5p promotes resistance to the chemo-
therapeutic cisplatin [1007] and CAF-secreted exosomal 
miR-22 promotes tamoxifen resistance in breast cancer 
cells [1008]. Moreover, esophageal squamous cell carci-
noma CAFs secrete cytokines, such as IL-6, in turn acti-
vating the STAT3/NF-κB pathway to promote resistance 
to cisplatin [1009]. Senthebane et al. (2018) discovered a 
significant upregulation of ECM proteins, namely colla-
gens, fibronectin and laminins, in esophageal squamous 
cell carcinomas tumor samples compared to the cor-
responding normal tissue. Decellularized ECMs con-
taining collagens, laminins and fibronectin were found 
to promote resistance to cisplatin, 5-fluorouracil, and 
epirubicin in esophageal cancer cells by reducing drug-
induced cell cycle arrest and apoptosis. In line with this, 
esophageal cancer cells cultured on ECMs deficient in 
collagen and fibronectin exhibited higher levels of cis-
platin-induced apoptosis compared to cells cultured on 
normal decellularized ECMs [1010].

Immunotherapy
As reviewed by Pophali et  al. (2024), among patients 
with hematological malignancies, ICI therapy has been 
approved only for those with classic HL and primary 
mediastinal B-cell lymphoma. Many clinical trials are 
currently underway to assess ICI therapy in other hema-
tological malignancies [1011]. Meanwhile, six CAR 
T-cell products have been approved by the FDA and 
European Medicines Agency for the treatment of vari-
ous hematological malignancies, as reviewed by Blüm 
et al. (2024) [1012]. The tumor vasculature, as outlined 
earlier, attenuates the recruitment of immune effector 
cells into the TME while inducing the accumulation of 
immunosuppressive cells and factors. Several studies 
have shown that the accumulation of immunosuppres-
sive immune cells in the TME, along with immuno-
suppressive cytokines, confers resistance to both ICIs 
and CAR T-cells. However, by pairing ICIs with agents 
that diminish the immunosuppressive elements of the 
TME, such as Tregs or MDSCs, these therapies can 
effectively revive the immune system against cancer 
cells [1013]. Recent clinical trials have explored such 
combinations, revealing synergistic effects that amplify 
the antitumor immune response and offer new hope 
to patients with cancers previously considered resist-
ant to immunotherapy. For instance, anti-PD-1 therapy 
alone did not have any effect on the immune composi-
tion of the TME in tumor-bearing mice; however, when 
combined with the depletion of TAMs, resulted in 

significantly higher percentages of CD8+ T-cells, CD4+ 
T-cells and NK cells [1014]. Interestingly, Arlauckas 
et  al. (2017) utilized in  vivo imaging to demonstrate 
the removal of anti-PD-1 antibodies from the surface of 
PD-1 + tumor-infiltrating CD8+ T-cells by PD-1- TAMs 
within minutes of effective PD-1 blockade on T-cells 
[1015]. Clavijo et al. (2017) reported that the depletion 
of granulocytic MDSC sensitized mice bearing T-cell 
inflamed mouse oral cancer 1 tumors to anti-CTLA-4 
induced tumor rejection and resulted in significantly 
prolonged survival compared to anti-CTLA-4 therapy 
alone [1016]. Meanwhile, in an orthotopic HCC mice 
model, anti-PD-1 therapy alone had no significant 
effect on survival time; however, when combined with 
the depletion of CAFs, resulted in significantly longer 
survival time [1017]. Furthermore, Taylor et  al. (2017) 
reported that PD-1 and CTLA-4 blockade alone exhib-
ited no benefit on tumor growth or survival in claudin-
low tumor–bearing mice, but when combined with the 
depletion of Tregs, reduced tumor growth and signifi-
cantly improved survival [1018]. In addition, the TME 
of refractory B-cell NHL patients who achieved com-
plete remission to CAR T-cell therapy displayed lower 
baseline levels of chemokines that negatively regulate 
the recruitment of TAMs, Tregs, MDSCs, as well as 
lower levels of tumor-associated DCs and fibroblasts, 
and immunosuppressive cytokines (IL-10 and TGF-
β1), than those in the partial remission group [1019]. 
The expression of inhibitory receptors on TILs may 
also be implicated in resistance to ICI therapy. Thom-
men et  al. (2015) demonstrated that increased expres-
sion of inhibitory receptors, including PD-1, TIM3, 
CTLA-4, LAG-3, and B- and T-lymphocyte attenuator 
(BTLA), on intratumoral CD8+ T-cells derived from 
NSCLC patients correlated with disease progression 
[1020]. The study found that patients expressing higher 
numbers of PD-1hi T-cells responded poorly to PD-1 
blockade alone, and these cells displayed significantly 
higher expression of TIM3, CTLA-4, LAG3, and BTLA 
compared with compared with PD-1int subsets. Inter-
estingly, in addition to its role in angiogenesis, VEGF 
expression in the TME has been associated with resist-
ance to ICIs. Voron et  al. (2015) demonstrated that 
PD-1 blockade induced a significant anti-tumor effect 
only in VEGF-knockout MEF tumor-bearing mice, 
but not in wild type MEF tumor-bearing mice. In line 
with this, anti-PD-1, in combination with anti-VEGFA, 
induced a strong anti-tumor effect in a mouse model 
of CRC as compared with anti-PD-1 alone. Notably, 
VEGFA was shown to increase the expression of PD-1 
and other inhibitory checkpoints involved in CD8+ 
T-cell exhaustion (TIM3, CTLA-4, and LAG-3), which 
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as discussed earlier, may be implicated in resistance to 
ICI therapy [1021].

Radiotherapy
Intrinsic resistance typically arises from oncogenic muta-
tions; however, high levels of apoptotic inhibitor proteins 
such as cIAP1/2, XIAP, and survivin, lead to radioresist-
ance in NSCLC [1022–1025]. CSCs in the TME express 
high levels of CD133 to repair DNA damage efficiently 
[1026]. CD133-positive glioma cells have higher levels 
of DNA damage checkpoint proteins, including ATM, 
Rad17, Chk1 and Chk2. Other similar proteins include 
RAD51 and Exo1 which promote cell-specific radiore-
sistance. In NSCLC, CD44 overexpression promotes 
proliferation and upregulates PD-L1 expression to pro-
mote tumorigenesis, immunosuppression, and resistance 
[1027, 1028]. Intrinsic CSC radioresistance eventually 
leads to acquired radioresistance when CSCs are not 
killed by ionizing radiation (IR) [1029, 1030]. In a study 
on breast cancer, stromal cells, including CAFs and 
bone marrow cells, induced radioresistance in tumor 
cells through an IFN-related DNA damage resistance 
signature [1031] In another study on pancreatic can-
cer, CAFs enhanced tumor cell proliferation, migration, 
invasion, and colony formation resulting in radioresist-
ance through factors such as interleukin-1β (IL-1β), 
and TGF-β [1032]. Effective DNA damage response and 
cell recovery are promoted by the production of IGF-1, 
insulin-like growth factor 2 (IGF-2), chemokine (C-X-C 
motif ) ligand 12 (CXCL12), and β-hydroxybutyrate, 
which increase ROS levels and induce autophagy in can-
cer cells [1033]. CAFs also produce the signaling mol-
ecule chemokine (C-X-C motif ) ligand 1 (CXCL1) and 
their interaction via an autocrine/paracrine signaling 
loop pushes the TME towards a radioresistant phenotype 
[1034]. Additionally, hypoxic tumor cells are primarily 
radioresistant and intrinsic resistance is therefore also 
closely tied to pre-existing hypoxic conditions within 
tumors, where oxygen deprivation hinders the formation 
of DNA-damaging ROS necessary for effective radio-
therapy [1035]. Hypoxia exerts selection pressure and 
promotes the growth of cells with malignant potential, 
inducing EMT [1036]. The most prominent mechanism 
of hypoxia in radioresistance is the expression of HIF-1 
which enhances glycolysis, serine synthesis pathway, and 
pentose phosphate pathways and increases antioxidant 
production to buffer radiation-induced ROS, conferring 
radioresistance [1037–1039]. ROS is also elevated by the 
process of hypoxia itself which triggers a feedback loop in 
favor of antioxidant generation and activates autophagy 
to accelerate the clearance of cellular ROS products, 
making cells radioresistant [1039–1043]. Hypoxia also 
keeps stem cells in a “quiescent” state which preserves 

proliferation and differentiation potential, decreasing 
radiosensitivity [1044].

Targetedtherapy
Hypoxia creates a selective pressure that drives tumor 
cells to adapt in ways that foster resistance to therapy. 
Under hypoxic conditions, tumor cells stabilize HIF-1α, 
which activates genes that promote EMT, including 
TWIST and SNAIL [1045]. In NSCLC, hypoxia-induced 
HIF-1α leads to downregulation of E-cadherin [1046, 
1047]. This switch from an epithelial to a mesenchy-
mal phenotype facilitates cell detachment and invasion, 
thereby contributing to resistance against EGFR tyrosine 
kinase inhibitors (TKIs) such as gefitinib [1048, 1049]. 
Besides EMT, several cell populations within the TME 
are also key players in tumor progression and intrin-
sic drug resistance. For instance, CAFs facilitate drug 
resistance by secreting cytokines that suppress immune 
function and interacting with tumor cells [1045]. CAF-
derived HGF and IGF-1 mediate primary resistance to 
TKIs [1050]. In osimertinib-resistant NSCLC, CAFs 
release IL-6, IL-8 and HGF, promoting EMT [1045] 
CAFs also secrete cardiotrophin-like cytokine factor 1 
(CLCF1), inducing TGF-β which enhance cell stemness 
and chemokine (C-X-C motif ) ligand 6 (CXCL6) which 
polarize TANs into the N2-like phenotype, creating a 
tumor microenvironment that promotes cancer cell 
stemness and immunosuppression [1051]. In breast can-
cer, CAFs produce NRG1β, stabilizing HER2-human 
epidermal growth factor receptor 3 (HER3) dimers and 
causing lapatinib resistance[1052]. Furthermore, CAFs 
promote angiogenesis via VEGFR-independent pathways, 
with pericytes potentially increasing VEGF produc-
tion, further contributing to resistance to VEGFR TKIs 
[1053, 1054]. MDSCs impair the function of CTLs by 
generating nitric oxide and peroxynitrite, which reduces 
T-cell responsiveness [1055]. Additionally, MDSCs 
secrete pro-angiogenic factors like IL-8, matrix metal-
loproteinase 8 (MMP-8), and MMP-9, promoting tumor 
angiogenesis and progression [1056–1058]. In RCC, the 
anti-angiogenic drug sunitinib targets these pro-angi-
ogenic pathways, but high levels of MDSCs persist in 
resistant cases due to increased production of GM-CSF, 
which protects MDSCs from apoptosis [1056]. Despite 
sunitinib treatment, MDSCs maintain their proliferation 
through the action of cytokines like IL-6 and GM-CSF, 
thereby bypassing the inhibition and further enhancing 
angiogenesis [1059]. TAMs, prevalent in the TME, polar-
ize to M2 and promote drug resistance [1045]. Tumor 
cells secrete VEGF and IL-6 to recruit macrophages, 
promoting M2 polarization; and these M2 macrophages 
secrete chemokines like CC-motif chemokine ligand 15 
(CCL15), which activates the NF-κB pathway, causing 
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gefitinib resistance [1060]. In NSCLC patients, their 
TAMs secrete EREG gene-encoded epiregulin, form-
ing EGFR/HER2 heterodimers on cancer cells, induces 
phosphorylation of AKT, and attenuates TKI-induced 
apoptosis, therefore reducing TKI effectiveness [1061]. 
M2 TAMs also release HGF, causing sorafenib resistance 
in HCC and attracting more TAMs [1062]. In addition, a 
recent study illustrated that TAMs promote anti-andro-
gen resistance of bone metastatic prostate cancer 
through induction of the fibronectin-Itga5-Src signaling 
cascade [1063]. Moreover, Tregs drive immunosuppres-
sion and drug resistance by upregulating cytokines and 
pathways that reduce T-cell function. In HCC, CC-motif 
chemokine ligand 22 (CCL22) mediates Treg migration 
into the TME, increasing sorafenib resistance [1045]. 
Combining TKIs with ICIs offers a promising strategy to 
overcome resistance by modulating the immunosuppres-
sive TME. Clinical trials demonstrated that this combina-
tion significantly improves survival outcomes in RCC and 
NSCLC [1064–1066]. Targeting the TME and its cellular 
components is crucial for addressing drug resistance and 
enhancing cancer treatment efficacy.

Adaptive resistance
Chemotherapy
Interestingly, chemotherapy-induced EMT has been 
associated with chemoresistance. Li et al. (2015) reported 
that EMT-induction, evidenced by increased expres-
sion of the EMT-TFs Snail and Slug, was associated with 
acquired resistance to doxorubicin in colon cancer cells 
[1067]. In line with this, the reversal of EMT sensitized 
colon cancer cells to doxorubicin. Similarly, the induction 
of EMT, evidenced by the downregulation of E-cadherin 
and upregulation of vimentin, N-cadherin, and fibronec-
tin, was observed in acquired cisplatin-resistant tongue 
squamous cell carcinoma cells, and a reversal of EMT 
sensitized these cells to cisplatin [1068]. Doxorubicin has 
also been shown to induce the expression of the EMT-
TF TWIST1 in breast cancer cells [1069]. Accordingly, 
doxorubicin-treated cells displayed reduced expression of 
E-cadherin, and upregulation of vimentin. Notably, only 
doxorubicin-treated cells undergoing EMT displayed 
multidrug resistance (MDR) to vincristine, pacilitaxel, 
and bleomycin. Compared to their parental cells, tras-
tuzumab-resistant HER2-overexpressing breast cancer 
cells displayed increased expression of Slug and TWIST; 
and in line with this, reduced expression of E-cadherin 
and increased expression of N-cadherin [83]. Further-
more, Kurrey et  al. (2009) discovered that resistance to 
paclitaxel in ovarian cancer cells is associated with pacli-
taxel-induced expression of Snail and Slug. These factors 
induce resistance to apoptosis and promote stem-like 
characteristics, which lead to therapy failure, tumor cell 

recovery, and disease recurrence [1070]. The recruitment 
of immunosuppressive cells into the TME in response 
to chemotherapy contributes to TME-mediated chem-
oresistance. DeNardo et  al. (2011) reported that pacli-
taxel significantly increased the infiltration of mammary 
tumors by TAMs, and the combination of macrophage 
depletion and paclitaxel treatment improved survival 
[1071]. Similarly, paclitaxel was shown to induce an influx 
of TAMs in mammary tumors, which conferred protec-
tion against the chemotherapeutics paclitaxel, etoposide, 
and doxorubicin through cathepsin-dependent and/or 
cathepsin-independent mechanisms [1072]. Hughes et al. 
(2015) found that M2-skewed TAMs were abundant in 
mouse tumors following treatment with various chemo-
therapeutics, and this promoted their relapse [1073]. 
In cisplatin-treated neuroblastoma cells, the exosomal 
transfer of miR-155 from TAMs to neuroblastoma cells 
was shown to enhance telomerase activity and promote 
chemoresistance [1074]. Meanwhile, in a mouse model 
of human luminal type B breast cancer, doxorubicin 
treatment induced the recruitment of CCR2-expressing 
myeloid cells, and Ccr2 null host mice responded better 
to doxorubicin [1075]. Sun et  al. (2012) demonstrated 
that in response to chemotherapy, prostate fibroblasts 
upregulated the expression of the Wnt family member 
wingless-type MMTV integration site family member 
16B (WNT16B) to reduce the effect of chemotherapy 
[1076]. Furthermore, a significant increase in CAFs was 
observed following chemotherapy in CRC specimens 
from patients, and chemotherapy was shown to induce 
colorectal CAFs to secrete IL-17A, which promotes 
chemoresistance through the NF-κB pathway [1077].

Immunotherapy
The compensatory upregulation of alternative inhibitory 
immune checkpoints in response to immune checkpoint 
blockade can exert immunosuppressive effects, poten-
tially leading to the failure of ICI therapy. For instance, an 
upregulation of TIM-3 in PD-1 antibody-bound T-cells 
was observed in resistant lung cancer mouse models and 
patients following anti-PD-1 treatment [1078]. In pros-
tate tumors following anti-CTLA-4 therapy, the expres-
sion of both PD-L1 and VISTA significantly increased on 
CD4+ T-cells, CD8+ T-cells and CD68+ macrophages. In 
addition, PD-L1 expression on tumor cells increased. At 
the time of the study, ipilimumab monotherapy had not 
yet demonstrated significant clinical benefit in patients 
with prostate cancer [1079]. Similarly, Kakavand et  al. 
(2017) reported that in a cohort of metastatic melanoma 
patients treated with either anti-PD-1 inhibitor or a com-
bination of anti-PD-1 and anti-CTLA4 inhibitors, most 
patients with progressive disease displayed significantly 
increased density of VISTA+ lymphocytes following 
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treatment [1080]. Though tumoral PD-L1 increased in 
the majority of patients with progressive disease, this 
change did not reach statistical significance. Interest-
ingly, the study demonstrated a significant increase in the 
density of FOXP3 + Tregs following immune checkpoint 
blockade, which strongly correlated with the expression 
of VISTA. These findings are consistent with that of Le 
Mercier et al. (2014) where VISTA blockade was shown to 
attenuate the emergence of tumor-specific Foxp3+CD4+ 
Tregs from naïve CD4+ T-cells [1081]. In CAR T-cell 
therapy, a single chain antibody variable fragment (scFv), 
often of murine origin, typically accompanies the tumor 
binding function of the CAR. It has been suggested that 
the production of anti-murine scFv CAR antibodies and 
CTLs, in response to CAR T-cell infusion, may lead to 
CAR T-cell rejection. Nevertheless, findings thus far are 
conflicting. In a phase 1 clinical trial in patients with 
malignant pleural mesothelioma (NCT01355965), anti-
mesothelin CAR T-cell therapy triggered anaphylaxis in 
one patient with malignant pleural mesothelioma, most 
likely by inducing the production of IgE antibodies spe-
cific for the murine-based antibody sequences present in 
the CAR-modified T-cell product [1082]. Meanwhile, in 
a phase 1/phase 2 clinical trial in patients with relapsed/
refractory B-ALL (NCT01865617), cytotoxic CD8+ T-cell 
responses to anti-CD19 CAR T-cells occurred in five 
CAR T-cell therapy-resistant patients following a sec-
ond infusion of CAR T-cells, resulting in the loss of CAR 
T-cells. Epitope mapping in one of these patients discov-
ered immunogenic epitopes within the murine FMC63-
derived CD19-specific scFv used to design the CAR in 
the clinical trial [1083]. However, a pooled analysis of two 
multicenter trials of relapsed/refractory paediatric B-ALL 
patients treated with anti-CD19 CAR T-cell therapy 
(NCT02435849; NCT02228096) found that treatment-
induced anti-murine CAR19 antibodies neither affected 
the efficacy of therapy nor impacted the day 28 clinical 
response [1084].

Radiotherapy
Radiation therapy (RT) can alter the immune TME and 
thus the patient’s immune profile [1085]. A study across 
several cancer types found that RT induced a systemic 
reduction of CD3+ and CD4+ T-cells, driving the TME 
towards an immunosuppressive phenotype [1086]. The 
release and accumulation of immunosuppressive cells in 
the TME further aggravate the immunosuppressive TME 
[1085–1090]. Suppressive immune cells such as MDSCs, 
Tregs, TAMs, and N2 neutrophils repress T-cell acti-
vation, increase infiltration of MDSCs and Tregs, and 
activate CAFs, offering tumor cells protection against 
treatment-activated cell death [1089–1093]. Moreover, 
IR induces GM-CSF secretion, promoting Arg1-rich 

MDSCs migration and suppression of T-cell function 
and activation [1094]. MDSCs also promote the destruc-
tion of T-cell receptors and can trigger the PD-L1 path-
way or induce IL-10 secretion [1089]. Additionally, RT 
mediates STING activation which can similarly cause 
monocytic MDSC recruitment as shown in MC38 colon 
tumors, followed by inhibition of CD8+ T-cell and DC 
activity [1095–1097]. A study on head and neck squa-
mous cell carcinoma found that RT may also upregu-
late CCR2 in tumor cells, leading to the accumulation 
of TNFα-producing monocytes and Tregs [1088]. In the 
case of ovarian cancer, tumor cells and microenviron-
mental macrophages produce CCL22 which mediates 
tumor Treg recruitment [1098]. RT causes the overex-
pression of enzyme 12-LOX in oesophagal cancer cells, 
which upregulates CCL5 and promotes polarization of 
THP-1-derived macrophages to the pro-tumor M2 sub-
type, enhancing cellular metastasis and inducing radi-
oresistance [1098, 1099]. Radioresistance induced by M2 
macrophages promotes tumor cell survival and fibrosis 
[1100]. Following RT, tumor cells that survive upregu-
late HIF-1α and induce VEGF expression [1101, 1102]. 
VEGFA can increase inhibitory receptors which exert 
a combined effect on T-cell exhaustion [1103, 1104]. 
VEGFA secretion can also induce FasL expression, 
enhancing the pro-tumor environment [1105–1107]. 
IR-induced tumor vasculature can also influence pleio-
tropic alterations in the TME and worsen pre-existing 
hypoxia by directly or indirectly upregulating HIF-1α, 
enabling more effective T-cell suppression [1101–1108]. 
This upregulation aggravates tumor hypoxia by inhibiting 
myeloid cell differentiation and inducing radioresistance, 
angiogenesis, and malignant progression [1101–1113]. 
The upregulation and production of the aforementioned 
factors can induce tumor cell EMT and the combined 
effect of altered TME and EMT leads to tumor progres-
sion with poor prognosis [1114–1116].

Targeted therapy
EMT is a reversible biological process where epithelial 
cells lose their cell–cell adhesion and polarity, gaining 
mesenchymal traits like motility and invasiveness [1046]. 
This transition is regulated by key transcription factors 
such as SNAIL, ZEB, and TWIST [1117, 1118]. During 
EMT, epithelial markers like E-cadherin are downregu-
lated, while mesenchymal markers such as N-cadherin 
and vimentin are upregulated, altering cellular charac-
teristics and contributing to therapy resistance [1045]. In 
NSCLC, this shift enhances cell invasiveness and resist-
ance to EGFR TKIs as they can activate alternative sur-
vival pathways and evade drug effects. Similar resistance 
mechanisms are observed in anaplastic lymphonic kinase 
(ALK)-positive NSCLC [1046]. Prolonged exposure 
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to ALK inhibitors such as crizotinib can further drive 
EMT, leading to enhanced drug resistance [1119–1124]. 
This resistance is mediated by the activation of alterna-
tive pathways like AXL and IGF-1R, which bypass the 
effects of ALK TKIs [1125–1129]. The TME is pivotal 
in initiating and sustaining EMT, with factors such as 
hypoxia, growth factors, and inflammatory cytokines 
secreted by stromal cells acting as potent inducers [1045). 
For instance, TGF-β, abundant in the TME, is a potent 
EMT inducer and its level increases with increasing gefi-
tinib concentrations in NSCLC, a feedback regulation 
that promotes EMT and EGFR-TKI resistance estab-
lished [1130]. TGF-β activates EMT transcription fac-
tors via both SMAD and non-SMAD pathways such as 
PI3K/AKT and RAS/MAPK [17]. TGFβR/SMAD also 
downregulates phosphohydroxylase 3 (PHD3), a nega-
tive regulator of EMT, further promoting metastasis and 
reinforcing the EGFR pathway, thus enhancing tumor 
cell invasion and metastasis [1045]. In cancers such as 
NSCLC and RCC, EMT is associated with resistance to 
TKIs. For example, in RCC, sunitinib resistance is linked 
to EMT-induced changes including sarcomatous differ-
entiation, as shown in tumor histology [1131, 1132]. Also, 
EMT can lead to the downregulation of pro-apoptotic 
proteins like BIM, reducing the efficacy of TKIs [1133]. 
There is high expression of ZEB1 in erlotinib-resistant 
NSCLC cells, and knockdown of ZEB1 may restore the 
erlotinib sensitivity, suggesting that targeting EMT path-
ways could potentially restore drug response [1134]. In 
addition to EMT, immune cells in the TME are crucial 
to adaptive resistance. VEGF-TKI treatment can induce 
γδ T-cells to secrete IL-17A, leading to N2 TAN polari-
zation, immunosuppression, and VEGFR-TKI resistance. 
In HCC, sorafenib treatment increases TAN infiltration, 
promoting resistance through HIF-1α/NF-κB signaling 
pathways [1045]. Combating drug resistance requires 
a multifaceted approach addressing both intrinsic and 
adaptive mechanisms within tumors. Targeting the TME, 
including pathways involved in EMT, is essential for 
overcoming resistance [1045, 1055]. While direct EMT 
inhibitors are still lacking, drugs that target metabolism 
and combined therapies, such as EGFR inhibitors with 
TGF-β receptor inhibitors, show potential in reversing 
EMT-induced resistance [1135]. The role of AXL inhibi-
tors and Aurora kinase family inhibitors in restoring TKI 
sensitivity highlights the importance of addressing EMT-
related processes and resistance pathways [1136, 1137]. 
Epigenetic modulation using HDAC inhibitors or DNA 
methyltransferase inhibitors can reverse resistance mech-
anisms by altering gene expression patterns related to the 
DNA damage response and apoptosis, including EMT 
reversal [1138, 1139]. Advanced radiotherapy techniques 
like dose escalation or stereotactic radiotherapy, which 

deliver highly focused doses to resistant tumor regions, 
further improve local control. High-linear energy transfer 
(LET) radiation is particularly attractive for overcoming 
resistance as it causes dense ionization tracks and com-
plex DNA damage that is more difficult for cancer cells 
to repair, making it a potent option against radioresist-
ant tumors, and can be delivered via external beam irra-
diation (e.g., carbon ion therapy) or molecularly targeted 
approaches (e.g., targeted alpha therapy). Moreover, 
addressing the multifaceted interactions within the TME 
through combined therapeutic strategies offers a promis-
ing path forward for overcoming resistance and improv-
ing patient outcomes.

Challenges related to TME heterogeneity 
and plasticity in targeting TME for cancer 
treatment
In Sect.  ”Developments in TME-targeting strategies”, 
we detailed several potential TME-targeting therapeu-
tic strategies, primarily focusing on the immune cells (in 
both innate and adaptive immune systems) and stromal 
cells especially CAFs. One of the major challenges in 
developing and implementing novel approaches to target 
the immune-suppressive and cancer-supporting stromal 
cells in the TME is the inherent heterogeneity of various 
TME stromal cell populations, as well as their tempo-
spatial interactions and evolution during tumor pro-
gression/upon therapeutic interventions. In this section 
we further elaborate on these challenges when design-
ing TME-targeting strategies by focusing on the TME 
cell heterogeneity and treatment-induced plasticity in 
both stromal and cancer cells and during their reciprocal 
interactions.

Stromal cell heterogeneity and cancer cell‑reprogrammed 
stromal cell plasticity promote cancer aggressiveness 
and therapy resistance
The stromal cell compartment in the TME of most can-
cers is highly heterogeneous, and comprises, in addi-
tion to various immune cells, many subpopulations of 
fibroblasts, smooth muscle cells, myofibroblasts (i.e., 
myCAFs), cancer-associated endothelial cells and peri-
cytes, MSCs, and cancer-specific tumor-promoting 
ECM produced by a myriad of stromal cells. Recent 
advances in single-cell techniques such as scRNA-seq/
scATAC-seq/single-cell nuclear sequencing (scNuclear-
seq), single-cell proteomics, imaging mass cytometry 
(IMC), and spatial transcriptomics (e.g., GeoMx) have 
allowed us to better appreciate the stromal cell heteroge-
neity in the TME down to the single-cell resolution. For 
examples, PDAC, an aggressive epithelial cancer with 
a 5-year survival of < 15% at advanced stages, is notori-
ous in having a dense stroma, called desmoplasia, that 
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prevents immune cell infiltration and drug delivery. By 
combining scRNA-seq and spatial transcriptomic analy-
sis, a recent study [1140] showed that the SPP1+APOE+ 
TAMs and CTHRC1+GREM1+ myCAFs were spatially 
colocalized and functionally cooperated to generate an 
immune-suppressive TME in PDAC through active ECM 
deposition and EMT. As another example, scRNA-seq 
of 13,857 mesenchymal cells in 9 treatment-naïve lung 
adenocarcinoma (LUAD) displayed significantly enriched 
FAP+PDPN+ CAFs and ACTA2+MCAM+ pericytes in 
tumors. Interestingly, these two stromal subsets were 
both topographically adjacent to the perivascular niche 
with close interactions with ECs as assessed by IMC. 
NOTCH signaling drove these stromal-EC interactions 
in tumors and as a result, pharmacological or genetic 
approaches in inhibiting NOTCH pathway in mesenchy-
mal cells reduced collagen production and suppressed 
lung cancer cell invasion [1141]. As a final example, oste-
osarcoma is a bone cancer with unique TME populated 
by several types of MSCs, including inflammatory MSCs 
(iMSCs). scRNA-seq studies revealed that osteosarcoma 
cells secrete extracellular vesicles (ECVs) to transcrip-
tomically reprogram regular MSCs to iMSCs via ECV-
associated TGF-β and RNA cargo. iMSCs then mediated 
osteosarcoma chemoresistance and interestingly, block-
ing ECV-associated pathways using ladarixin and tocili-
zumab overcame iMSC-mediated chemoresistance and 
inhibited osteosarcoma metastasis [1142].

Induction of mesenchymal plasticity in cancer cells 
by immune cells and metabolic and physicochemical 
factors in the TME also promotes therapy resistance
Vice versa, (neuro)epithelial cancer cells may also become 
reprogrammed by the cells, ECM components, and solu-
ble factors in the TME to non-epithelial drug-resistant 
states. For instance, glioblastoma multiforme (GBM) is 
an aggressive brain tumor thought to be derived from 
neural stem/progenitor cells. A recent study, by perform-
ing scRNA-seq studies in 76 GBM samples from either 
untreated or nivolumab-treated patients in a clinical trial, 
demonstrated that nivolumab treatment caused a sig-
nificant mesenchymal transformation of GBM cells and 
increases in TAMs and exhausted T-cells [1143]. These 
findings imply that PD-1 expressing immune cells in the 
GBM TME may normally signal to GBM cells and keep 
them in a neuroepithelial state. Immune cells and phys-
icochemical factors in the TME may influence tumor cell 
behavior through epigenetic mechanisms such as DNA 
methylation and histone modification, and these changes 
can reprogram cancer cells into more aggressive and 
therapy-resistant phenotypes. Furthermore, metabolic 
(e.g., hypoxia) and ECM alterations (e.g., increased col-
lagen production) in the TME also promote cancer cell 

adaptability and cancer stemness. In prostate cancer 
patients receiving androgen deprivation therapy (ADT) 
and antiandrogens such as enzalutamide, CAFs in the 
TME secreted an increased amount of glucosamine, an 
abundant ECM proteoglycan, which subsequently pro-
moted O-GlcNAcylation as well as increased expres-
sion of transcription factor Elk1 in prostate cancer cells. 
Increased Elk1 in turn induced the transcription of an 
enzyme called 3βHSD1 (HSD3B1) leading to de novo 
intratumoral androgen synthesis to overcome castra-
tion effects. As a result, Elk1 inhibitors could dampen 
the CAF-originated, glucosamine-initiated intracrine 
androgen biosynthesis using extragonadal substrates and 
inhibit the development of castration-resistant prostate 
cancer or castration-resistant prostate cancer (CRPC) 
[1144]. A follow-up study from the same group revealed 
that 3βHSD1, the rate-limiting enzyme in catalyzing the 
intra-tumoral androgen synthesis from non-testicular 
substrates such as dehydroepiandrosterone (DHEA), 
became stabilized by hypoxia via repressing autophagy-
related genes [1145].

Treatment‑induced plasticity in both cancer and stromal 
cells further promotes therapy resistance
Another major challenge is related to treatment-induced 
plasticity in both cancer cells in the tumor parenchyma 
as well as in fibroblasts and other stromal cells in the 
TME, which subsequently drives anticancer therapy 
resistance. The abovementioned example of nivolumab-
induced reprogramming of GBM cells to a mesenchy-
mal and chemo-resistant state illustrates this challenge. 
CAFs in the prostate cancer TME may contribute to 
therapy resistance by enhancing cancer cell survival, pro-
liferation, and metastasis via secreting growth factors, 
cytokines, and ECM components, as well as by promot-
ing angiogenesis, immune evasion, and EMT. ADT and 
antiandrogen treatments may also reprogram stromal 
cells, fostering CRPC. For example, a recent interesting 
study demonstrated that ADT treatment of prostate can-
cer models reprogrammed iCAFs in the TME to SPP1+ 
myCAFs, which in turn interacted with prostate can-
cer cells and induced EMT in prostate cancer cells via 
TGF-b/SWI-SNF signaling. Consequently, depletion of 
the SPP1+ MyCAFs in genetic mouse models of prostate 
cancer inhibited CRPC development and prolonged the 
lifespan of the mice [1146].

New developments in understanding and tackling TME 
heterogeneity and plasticity
Understanding TME heterogeneity and lineage plas-
ticity opens new theranostic avenues. A recent study 
employed scRNA-seq to compare urine-derived cells 
(UDCs) in bladder cancer patients with the immune cells 
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and tumor cells [i.e., circulating tumor cells (CTCs)] in 
patients’ blood with respect to their transcriptomic fea-
tures. Surprisingly, they observed that UDCs were tran-
scriptionally more similar to tumor cells in the patient’s 
bladder cancer than the immune and tumor cells in the 
blood. In addition, UDCs were heterogeneous encom-
passing cytotoxic and activated CD4+ T-cells, exhausted 
and tissue-resident memory CD8+ T-cells, macrophages, 
germinal-center-like B-cells, tissue-resident and adap-
tive NK cells, and regulatory DCs found in tumor [1147]. 
Thus, this study suggests that bladder cancer UDCs may 
serve as surrogates for the TME and potential response/
resistance biomarkers for clinical treatment such as ICIs.

This section clarified and emphasized that mechanism-
driven development of novel combination strategies to 
holistically target 1) cancer cells proper, 2) TME-induced 
cancer cell state shifting, and 3) therapy-induced plastic-
ity in both cancer and stromal cells, may achieve better 
therapeutic efficacy and long-enduring clinical benefits. 
For example, the study in PDAC [1140] identified the 
crosstalk between stromal (myCAFs) and myeloid cells 
(TAMs) as critical mediators of immune-suppressive 
TME in PDAC, suggesting that, in principle, the com-
bination treatment of pancreatic cancer cells with 
chemodrugs (e.g., gemcitabine), TAMs with anti-SPP 
(osteopontin) antibodies, and myCAFs with anti-GREM1 
antibodies, may deliver a much stronger punch at the 
PDAC. Targeting TME-modulated lineage plasticity in 
prostate cancer cells may also enhance treatment effec-
tiveness and reduce resistance to ADT/antiandrogens. 
For example, stromal cells like CAFs promote therapy 
resistance and CRPC development by triggering pros-
tate cancer cell EMT through secreting cytokines such as 
TGFβ, by reprogramming CAFs themselves from iCAFs 
to SPP1+ myCAFs [1146], or by secreting the ECM pro-
teoglycan glucosamine to enhance intracrine androgen 
production [1144]. Simultaneous treatment of prostate 
cancer with ADT/enzalutamide (to target prostate can-
cer cells), anti-SPP1 antibodies (to target SPP1+ myCAFs) 
[1146], and Elk1 inhibitors (to target glucosamine-ini-
tiated intratumoral androgen production) [1144] may 
elicit a more powerful and longer lasting prostate cancer-
inhibitory effects than ADT/antiandrogens alone.

Limitations and challenges in exploiting the full 
clinical potential for TME modulation
Recent clinical trials targeting the TME have yielded 
mixed results, with some exhibiting significant benefits 
in specific subsets of patients or tumor types, while oth-
ers have failed to demonstrate efficacy [1148]. This is not 
surprising given the complexity and heterogeneity of 
the TME, which can lead to variable responses among 
patients, not only between different types of cancer but 

also within individual tumors complicating the predic-
tion of outcomes and personalization of treatment strate-
gies. This unfavorable situation highlights the importance 
of precise patient selection, the need for identification of 
reliable biomarkers to predict therapeutic response and 
for combination therapies that target multiple compo-
nents of the TME. The current limitations to the research 
or clinical application related to the TME are essentially 
caused by an incomplete understanding of the highly het-
erogeneous nature and complex dynamics of the TME, 
its numerous components and intricate network of cel-
lular and molecular interactions. Moreover, the compo-
sition of the TME varies significantly between different 
types of cancer, individual tumors of the same cancer 
type and can even among different regions of an indi-
vidual tumor. In addition, it may change over time dur-
ing tumor growth/cancer development and in response 
to therapeutic interventions, often leading to the devel-
opment of resistance mechanisms [1149]. Understand-
ing the factors affecting the therapeutic outcomes after 
targeting the TME is essential to improve survival and 
safety of tumor patients. The mechanisms underlying 
intrinsic and acquired resistance need to be studied in a 
“real TME”. In fact, past and present studies have largely 
been based on resistant cells in vitro, ignoring the com-
plex spatial and temporal composition of the TME that 
can be crucial for acquired resistance in  vivo. Current 
preclinical models often fail to capture the full complex-
ity of TME, which can limit their predictive value for 
clinical outcomes. Advancing these therapeutic strate-
gies depends on the availability of more accurate and 
sophisticated preclinical models that accurately mimic 
the human TME. Thus, further empirical research must 
adopt the development of models that accurately resem-
ble the TME for bench investigations. To fully elucidate 
the important role of the TME in acquiring resistance, 
these should include tumor-tissue explants (i.e., patient 
biopsy-isolated human complex organoids, which incor-
porate multiple cell types alongside acellular aspects of 
the TME [1150, 1151], advanced methods of tissue engi-
neering (multicellular tumor-spheroids), and “tumor on a 
chip”. Once successful, the newly gained knowledge must 
be further evaluated in preclinical models such as suit-
able humanized mouse cancer models. All of the above 
challenges underscore the need for a multidisciplinary 
approach that integrates insights from oncology, immu-
nology, and bioengineering to devise strategies that can 
safely and effectively manipulate the TME for therapeu-
tic benefit. Since the TME is of dynamic nature, e.g., in 
response to treatment, the integration of new biomark-
ers and novel technologies is required to capture and 
monitor these changes; the latter include molecular 
imaging techniques, refinement of biomarker assays, the 
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integration of radiomics, AI and machine learning, and 
the design and development of more sophisticated autol-
ogous experimental ex  vivo models. The future direc-
tion of research in this area will, therefore, have to focus 
on further elucidating the complex interactions within 
the TME, identifying new therapeutic targets, catching 
the unique characteristics of each patient’s tumor and 
developing more sophisticated models for predicting 
treatment response. In addition, there is a strong need 
for novel and better biomarkers, which are invaluable 
for selecting the most appropriate treatment regimen 
[1152], predicting the response to TME-targeted thera-
pies and monitoring alterations of the TME in response 
to treatment and eventually the development of resist-
ance. Principally, interventions targeting the TME may 
have undesired side effects on normal tissue homeostasis 
that may require discontinuation of therapy [1153, 1154]. 
Since many components of the TME, such as stromal 
cells and ECM proteins, are also present in healthy tis-
sues, there is a risk that 1) targeting these components 
could disrupt normal physiological processes leading to 
adverse effects; 2) the dynamic nature of the TME and its 
ability to evolve in response to therapy can lead to resist-
ance characterized by its ability to adapt and reprogram 
in response to therapeutic pressures (this would neces-
sitate adaptive treatment strategies that can foresee, 
counteract, or even prevent, the emergence of resist-
ance) [1155]; 3) disrupting ECM, or tumor vasculature or 
architecture to improve drug delivery could inadvertently 
enhance tumor cell dissemination, potentially increasing 
the risk of metastasis. Similarly, strategies that modulate 
immune cells of the TME could trigger inflammatory 
responses that in turn might support tumor progres-
sion by providing cancer cells with growth-stimulatory 
signals [1156]. If these mentioned limitations in reveal-
ing the secretes of the TME can be overcome and finally 
exploited for clinical application, then more effective 
treatment regimens can be tailored. These are expected 
to revolutionize the landscape of cancer therapy, moving 
towards more effective, less toxic, and highly personal-
ized treatment regimens.

Characterization of inter‑ and intra‑tumor heterogeneity 
of the TME and tumor subtypes
The inter- and intra-tumor heterogeneity of solid tumors 
is largely based on different compositions of the TME, 
and have been characterized only for some tumor types. 
Also, quantitative inference on spatial heterogeneity in 
the TME is still limited. Applying a framework of spa-
tially annotated transcriptomics data in the TME of 
samples, spatially correlated patterns in the abundance 
scores were observed for the tumor cells, while immune 
cell types showed dispersed patterns in the TME. 

Intra-tumor (non-genetic) spatial patterns/variations in 
cell type abundance and pathway signatures in the TME 
were caused by hypoxia, EMT, and inflammation signa-
tures. These data suggest that because of intra-tumor 
spatial heterogeneity, single biopsies may underappreci-
ate the extent of clinically relevant, functional variations 
in the TME within individual tumors [1157]. Hence, 
multiple biopsy sampling covering different regions 
from the same tumor may be required to avoid this 
problem. This is a relevant issue given that tumor biop-
sies are integral to the diagnosis and clinical manage-
ment of cancer patients. The different compositions of 
the TME are reflected in the various subtypes that have 
been characterized for some cancers. PDAC [1158], and 
neuroblastoma [1159] present with three immune sub-
types/clusters, of which cluster #2 in both cases exhibit 
an EMT-related signature with elevated levels of TGF-β 
[1158, 1159]. Moreover, in glioblastoma, a tumor with 
poor prognosis for immunotherapy due to the complex 
TME, a ConsensusClusterPlus analyses revealed two 
subtypes (C1, C2), which were characterized by different 
EMT-related gene expression patterns. Subtype C2 had 
more malignant clinical and pathological manifestations, 
higher immune infiltration and tumor-associated path-
ways scores, and poorer response to treatment [1160]. 
Finally, a novel EMT-related lncRNA signature (EMTrLS) 
had strong prognostic value and potential clinical sig-
nificance in lower-grade glioma. EMTrLS-high patients 
presented with high expression of immune checkpoints 
explaining their immunosuppressive state and EMTrLS 
stratification was able to predict therapy response to PD1 
blockade. Since EMT-related signatures in the TME are 
predictive of the antitumor therapy response [1161], the 
use of EMTrLS as a novel biomarker may enable assess-
ment of the responsiveness of LGG to chemothera-
peutic drug efficacy and PD1 blockade. As previously 
mentioned, co-treatment with inhibitors of EGFR or the 
TGF-β receptors may be able to reverse EMT-like pheno-
type and increase therapy success [1135].

Novel agents specifically targeting the TME
Another ongoing challenge resides in the identification of 
the most effective targets within the TME; and once iden-
tified in the design and development of novel therapeu-
tic agents that can selectively and efficaciously neutralize 
these without adversely affecting normal tissue function. 
These include drugs that normalize tumor vasculature, 
inhibit ECM-associated enzymes, deplete immunosup-
pressive cells, enable infiltration or activation of cytotoxic 
cells within the TME [1162], or phenotypically convert 
immunosuppressive into antitumor reactive cells, e.g., 
TAMs and CAFs. Ultimately, these drugs are designed to 
disrupt the tumor-supportive network within the TME, 
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thereby hindering tumor growth and metastasis. Exam-
ples for novel drugs include those that target the neoan-
giogenesis process and the immune microenvironment. 
As outlined in this review, anti-angiogenesis drugs can 
normalize these tumor blood vessels, improve perfu-
sion and oxygenation, reduce interstitial pressure, and 
facilitate the delivery of chemotherapeutic and immu-
nomodulatory agents (e.g., lefitolimod and minnelide) 
to the tumor site. These novel TME-targeting agents are 
currently in various stages of development, and some are 
already being evaluated in clinical trials.

Emerging therapeutic strategies targeting the TME
Emerging therapeutic strategies that target the TME are 
at the forefront in cancer treatment and might partially 
or fully replace standard chemotherapies in the future. 
Unfortunately, they are mostly in the early stages of 
experimental and preclinical testing and aim to disrupt 
the supportive network that tumors exploit for growth, 
invasion, and resistance to conventional therapies by 
the following strategies: reprogramming of the stromal 
compartment, ECM targeting agents, modulation of the 
immune microenvironment, metabolic reprogramming 
of the TME, and personalized medicine approaches.

Reprogramming of the stromal compartment
Stromal reprogramming is a novel treatment strategy 
that focuses on modifying the supporting cells in the 
TME, namely CAFs and MDSCs, which play crucial roles 
in tumor growth and spread. The various strategies seek 
to either suppress or delete the cancer-promoting func-
tions of these cells or convert them into cells that pre-
vent tumor growth [1163]. One effective means is to use 
pharmacological inhibitors of TGF-β to block the activa-
tion of CAFs and dampen immunological responses in 
the TME [1164]. TGF-β inhibitors that specifically target 
signaling crosstalk between cancer and stromal cells have 
demonstrated potential in preclinical studies. These stud-
ies have demonstrated that blocking TGF-β signaling can 
reduce the capacity of CAFs to promote progression of 
tumors and simultaneously enhance their sensitivity to 
alternative treatment approaches [1165]. Unfortunately, 
these techniques for reprogramming stromal cells are 
still in the early phases and are mostly studied in preclini-
cal models. A particular challenge is to specifically target 
the tumor-promoting activities of these stromal cells, 
while maintaining their physiological roles in healthy tis-
sues. Very recently, senescent cells arising in the TME 
have quite paradoxically been shown to contribute to 
tumor progression, in part through increasing therapeu-
tic resistance. Selectively depleting senescent cells from 
affected organs in  vivo with senolytics (“senotherapies”) 

can impede tumor progression by restoring therapeutic 
responses [1166].

ECM targeting agents
The ECM not only provides structural integrity to tissues, 
but also plays an active role in cancer cell behavior, facili-
tating EMT, migration and invasion and hence tumor 
progression and metastasis. Moreover, a dense and 
fibrous ECM poses a physical barrier to drug penetration, 
which is a characteristic feature of many solid tumors. 
Agents targeting the ECM aim to disrupt these processes 
through various mechanisms, either by degrading ECM 
components to reduce tumor stiffness, or by inhibiting 
the enzymes or growth factors involved in ECM remod-
eling, like MMPs or TGF-β, respectively [1167]. Of note, 
reducing matrix stiffness or inhibiting TGF-β or MMPs 
in the TME will likely also reduce the EMT in the can-
cer cells. While these approaches have shown potential in 
preclinical studies, clinical translation has been challeng-
ing due to specificity issues. For instance, the broad activ-
ity of MMP inhibitors has led to side effects that limit 
their therapeutic window (see 2.3.3.). One of the major 
challenges is to achieve sufficient specificity in target-
ing tumor-associated ECM components without affect-
ing the normal ECM, which is mandatory for preserving 
the function of non-cancerous tissues. Hence, there are 
ongoing efforts to identify ECM components that are 
uniquely altered in tumors. Enzymes that enhance the 
permeability of the tumor mass by breaking down key 
ECM components promote a deeper and more uniform 
distribution of therapeutic agents [67]. The challenge 
posed by physical barriers also involve the need for devel-
oping devices designed to penetrate the ECM to ensure 
a more complete and targeted drug delivery, such as 
nanoparticles and other drug carrier systems. Overcom-
ing these barriers is critical for improving the efficacy of 
cytostatic drugs and other therapeutic agents in treating 
solid tumors.

Modulation of the immune microenvironment
The immune microenvironment plays a crucial role in 
the TME, since it has the capacity to both inhibit and 
facilitate tumor development. Its modulation there-
fore is crucial for enhancing the efficacy of immuno-
therapies: immunogenic tumors, characterized by their 
T-cell-infiltrated TME, respond better compared to non-
immunogenic tumors [1168]. Approaches to reverse the 
immunosuppressive TME include the use of checkpoint 
inhibitors, the implementation of vaccines to activate 
the immune system against tumor-specific substances 
[1169], and adoptive cell therapies such as CAR-T-cell 
therapy. Other approaches that are conceptionally simi-
lar to stromal reprogramming include the depletion, or 
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M1-directed repolarization, of TAMs, or blockage of the 
recruitment of monocytes into the TME [1170, 1171]. 
The TME can protect tumors from being detected and 
attacked by the immune system using a variety of strat-
egies, i.e., attracting Tregs or MDSCs, or blocking the 
infiltration of cytotoxic T-cells, while immunosuppres-
sive processes in the TME might hinder the efficacy of 
immune-modulating therapy [1172]. Changing this situ-
ation requires the combined action of drugs that not 
only stimulate the immune response, but also remove 
the protective barriers of the TME against immune cells. 
Therapeutic agents that can selectively deplete these 
immunosuppressive cell populations or inhibit their 
functions have the potential to reactivate the immune 
system’s ability to fight cancer. For instance, the MDSC-
depleting drug cabozantinib is currently being studied 
in several clinical trials in combination with ICIs for the 
treatment of prostate cancer [1173]. Treatment with the 
Toll-like receptor 9 (TLR9) agonist lefitolimod modu-
lated the TME via infiltration of activated CD8+ cells and 
a M1-directed phenotype shift in the macrophage pop-
ulation, resulting in a pronounced antitumor effect that 
correlated with the magnitude of infiltrated immune cells 
and tumor-specific T-cell responses. In murine tumor 
models, lefitolimod stimulated a persistent antitumor 
memory after tumor rechallenge, an increase of tumor-
specific T-cell responses and cross-reactivity against 
different tumor cells, and enhanced the limited antitu-
mor effect of anti-PD1 and anti-PD-L1 [1168]. Likewise, 
minnelide, a prodrug of triptolide, has shown antitumor-
igenic activity in multiple malignancies in part via target-
ing super-enhancers, which in turn are known to induce 
an immunosuppressive TME. When used in combina-
tion with cyclophosphamide, minnelide reduces tumor 
growth and eliminates metastasis by reprogramming the 
TME and enhancing cytotoxic T-cell infiltration in 4T1 
tumor-bearing mice [1174]. In summary, though efforts 
to regulate the immune microenvironment have demon-
strated considerable success in preclinical cancer models, 
the necessity of overcoming an immunosuppressive TME 
still persists.

Metabolic reprogramming of the TME
Recently, metabolic reprogramming of tumors has been 
found to have a role in modulating the TME to enhance 
immune cell responses. Recent evidence highlights the 
critical role of altered glucose, amino acid, and lipid 
metabolism in the TME on the metabolism, function and 
effectiveness of antitumor immune cells [1175]. Hence, 
therapeutic interventions targeting these metabolic alter-
ations have a great potential to be used in combinatorial 
treatments for diverse cancer types.

Personalized medicine approaches
The heterogeneity of the TME across different tumors 
and patients has prompted interest in personalized medi-
cine approaches, where specific molecular markers(s) 
uniquely expressed within the TME of an individual 
patients’ tumor are first identified and subsequently tar-
geted with tailored treatments. These biomarker-driven 
therapies involve the use of patient-derived tumor mod-
els, such as organoids and patient-derived xenografts 
(PDXs), to test and optimize therapeutic regimens. These 
approaches hold great promise for improving treatment 
efficacy and reducing toxicity by ensuring that patients 
receive therapies most likely to benefit them based on 
the unique composition of their TME, while at the same 
time spare them unwanted side effects. Personalized 
medicine approaches are gaining credit in oncology due 
to significant heterogeneity among the TMEs of differ-
ent patients. For example, the presence of particular 
genetic mutations or overexpressed proteins can guide 
the selection of targeted therapies, which ensures that the 
treatment regimen is specifically and maximally effec-
tive against the tumor’s unique profile [1176]. Moreover, 
the use of patient-derived models is revolutionizing the 
preclinical evaluation of cancer therapies. These mod-
els closely mimic the patient’s own tumor and hence its 
TME, thereby providing a more accurate prediction of 
how the tumor might respond to various treatments 
[1177]. By testing therapeutic regimens on these patient-
specific models ex vivo prior to their clinical application, 
the most promising treatment strategies can be identi-
fied. Personalized regimens thus hold the potential to sig-
nificantly improve the precision, effectiveness, safety of 
cancer therapies as well as the costs of the health system 
[1178].

Future directions
The TME is increasingly recognized as a key player in 
cancer progression and therapeutic response, offering 
both significant challenges and unique opportunities 
for the development of personalized medicine. In  vivo 
molecular imaging modalities such as positron emission 
tomography (PET), magnetic resonance imaging (MRI), 
and optical imaging have become essential tools in prob-
ing the TME, providing critical insights into its cellular 
and molecular composition. Laboratory techniques like 
IHC, flow/mass cytometry, multiplexed immunofluo-
rescence and spatial transcriptomics further enhance 
our understanding by enabling the detailed mapping 
of immune cells and gene expression within the TME, 
revealing the complex interplay that drives tumor behav-
ior. These tools are becoming integral to theranostic 
strategies, where diagnostic markers guide the selection 
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of targeted therapies, allowing also for personalized 
treatment plans that are tailored to the specific char-
acteristics of a patient’s tumor, thereby improving effi-
cacy while minimizing unnecessary interventions [1179, 
1180]. Likely the most clinically advanced applications of 
theranostics to date are “radiotheranostics”; i.e., a thera-
nostic approach based on nuclear imaging [e.g., PET or 
single-photon emission computed tomography (SPECT)] 
of molecular markers, whereafter the pharmacologi-
cal behavior of a targeted therapeutic analog directed 
against the same marker may be projected reliably given 
the spatially and temporally quantitative nature of the 
imaging. Recent advancements have seen the develop-
ment of various radiolabeled agents being investigated in 
clinical studies or preclinically in preparation for transla-
tion. Moreover, these agents may be specifically designed 
to target key components of the TME, such as hypoxic 
regions (e.g., 18F-FMISO) [1181–1183], chemokines 
[1184], or CAFs (e.g., breakthrough FAP-inhibitor mole-
cule UAMC-1110, an anti-fibrotic molecule which paved 
the way for the current FAP-radiotheranostics with more 
than 100 active clinical trials currently running for solid 
cancers) [1185–1187], and provide a dual role applica-
tion in therapy and diagnostic imaging. The integration 
of radiolabeled agents in therapeutic strategies extends 
to companion diagnostics, facilitating personalized treat-
ment plans. For instance, radiolabeled antibodies target-
ing specific tumor antigens enable the visualization of 
antigen expression patterns, guiding the selection and 
monitoring of targeted therapies [1188]. The future of 
TME analysis likely lies in an integrative approach that 
combines molecular imaging, biomarker assays, radiom-
ics [1189], and artificial intelligence (AI) [1190, 1191]. 
This synergy would ultimately offer a more comprehen-
sive view of the TME, enhancing our ability to diagnose, 
prognosticate, monitor, and treat cancer more effectively. 
Integrating data from various sources allows for a more 
nuanced understanding of the TME. AI algorithms are 
poised to play a crucial role here, processing and inte-
grating diverse data sets to uncover patterns and corre-
lations that would otherwise be missed. Several studies 
have demonstrated the effectiveness of such integrative 
approaches. For instance, combining clinical variables, 
radiomic features and blood-based biomarkers have 
improved the accuracy of predicting treatment response 
in certain cancers, such as high grade serous ovarian can-
cer [1192] and NSCLC [1193], and may pave the way for 
more personalized treatment strategies. While prom-
ising, several challenges exist in their integration and 
application. One significant challenge relies in the com-
plexity and heterogeneity of the TME, which requires not 
only comprehensive but as well also multi-dimensional 
analyses. Another hurdle involves the standardization 

of methodologies across different platforms and institu-
tions and patient populations to ensure reproducibility 
and comparability of results [1194]. Collaborative efforts 
and data sharing are essential to foster a more cohesive 
approach in leveraging these technologies. Furthermore, 
the TME is of dynamic nature necessitating real-time 
monitoring and adaptation of therapeutic strategies. 
Addressing these challenges is crucial for realizing the 
full potential of this approach. As we look into the future, 
advancements in molecular imaging technologies, refine-
ment of biomarker assays, and the integration of radiom-
ics and AI hold the promise to enhance understanding 
and manipulating the TME, and, thus, to pave the way for 
personalized medicine.

Conclusion
In this comprehensive review, we have explored the 
multifaceted role of the TME in cancer development, 
focusing on metastasis and the complexities of EMT. 
The intricate interactions between cancer cells and vari-
ous TME components, including CAFs, the ECM, and 
immune cells, are crucial in understanding cancer pro-
gression and the challenges in therapy. The emergence 
of TME-targeted therapies has been a significant devel-
opment, promising to revolutionize cancer treatment. 
Immunotherapies, treatments targeting CAFs, antian-
giogenic drugs, and ECM-directed therapies have shown 
potential in combating the adaptive nature of cancer. 
These strategies, by focusing on the TME, offer a path-
way to overcome the limitations of conventional treat-
ments, particularly in overcoming drug resistance and 
therapy failure. Up to now, the most prominent immune-
based therapeutic strategies targeting the immune com-
ponents of the TME are ICIs and ACT. Indeed, targeting 
the TME with immunotherapy using ICIs has maxi-
mized efficacy and benefit in cancer patients, although 
there is still significant limitation to their efficacy due to 
the immunosuppressive TME, as well as their potential 
toxicity due to immune related adverse events. Besides, 
targeting the TME with ACT using TILs or gene-mod-
ified T-cells expressing novel CARs or TCRs is another 
valuable strategy to modify the immune system to recog-
nize cancer cells and thus achieve an anti-cancer effec-
tor function. Hence, research on the TME is currently 
focusing on developing strategic approaches to alleviate 
the TME-mediated immune-suppressive mechanisms, 
induce anti-cancer immunity, and increment the potency 
and the specificity of immune-targeted drugs. Cur-
rent strategies to counteract TME-mediated resistance 
increasingly involve the development of combination 
therapies that integrate conventional cancer treatments 
with agents targeting the TME. These therapies repre-
sent a cutting-edge approach in oncology to overcome 
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the inherent limitations of conventional monotherapies 
and underscore the importance of a multifaceted attack 
in cancer treatment that targets both malignant cells 
and their supportive TME. Breaking down the protec-
tive barriers of the TME compromise possible resistance 
mechanisms, thereby synergistically enhancing the effi-
cacy of conventional therapies. Moreover, it is essential 
to establish reliable biomarkers to guide TME-targeted 
therapies to achieve significant clinical efficacy in cancer 
patients. In addition, an important limitation related to 
TME-targeted cancer immunotherapies include primary 
and acquired resistance, suggesting that a proper under-
standing of the TME components and their interaction 
would provide an important aid to overcome these limi-
tations. By leveraging this information, the potential of 
targeting the TME for the benefit of the majority of can-
cer patients will be considered an attainable goal. The 
FDA approval of various drugs and cell-based therapies 
on T-cells, immune checkpoints, and blood vasculature, 
has encouraged the ongoing investigation of the TME for 
further targets to possibly be exploited in future studies. 
Different mechanisms and cell types mediate immune 
suppression and thus suitable approaches targeting key 
vulnerabilities will be crucial. Moreover, the integration 
of advanced imaging modalities, theranostics, blood-
based biomarkers, radiomics, and AI is setting new fron-
tiers in oncological research. These technologies not only 
enhance our understanding of the TME but also pave 
the way for more accurate, personalized therapeutic 
approaches. Sophisticated imaging techniques enable us 
to visualize the TME with unprecedented clarity, aiding 
in the identification of novel therapeutic targets. As we 
move forward, the synergy between TME-focused thera-
pies and advanced technological tools holds immense 
promise. The future of oncology lies in leveraging these 
innovations to develop more effective, personalized can-
cer treatments. However, challenges remain, particularly 
in standardizing these approaches and ensuring their 
accessibility and efficacy across diverse patient popula-
tions. Examining the impact of systemic factors like diet, 
metabolism, and physical activity, as well as specific con-
ditions such as aging and inflammation, on the TME and 
its influence on therapy response is a compelling avenue 
for investigation. Gaining a deeper understanding of 
these aspects will enhance the precision of TME target-
ing, and thus, further improving treatment benefits for 
cancer patients. In conclusion, our understanding of the 
TME and its role in cancer biology has grown immensely, 
yet there is still much to uncover. The ongoing research 
in TME-targeted therapies and advanced diagnostic tools 
is crucial for the next leaps in cancer treatment, aim-
ing to transform patient outcomes and usher in a new 
era of precision oncology. Critical elements for future 

exploration encompass pinpointing and selectively 
addressing vulnerabilities within the TME to enhance the 
stratification of cancer patients, formulating innovative 
combinations of treatments, and achieving early cancer 
detection.
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