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Abstract 

Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized 
by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response 
can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. 
Over the past decades, although HLH has garnered increasing attention from researchers, there have been few 
advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating 
the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially 
aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted 
therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize 
the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting 
its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development 
of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may 
be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
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Introduction
Hemophagocytic lymphohistiocytosis (HLH) is a fatal 
disease characterized by pathological immune activa-
tion and dysregulated inflammation that cause wide-
spread tissue damage and multi-organ failure [1]. The 
first case related to HLH under the term “Histyocytic 
Medullary Reticulosis” was reported in 1939 by Scott and 
Robb-Smith in their seminal series of articles [2], and the 
inherited kind of HLH was then recognized in the mid-
twentieth century with the name of familial hemophago-
cytic reticulosis [3] (Fig.  1). With the advancement of 
genetic technology, the subsequent identification of 
HLH-related gene mutations has enhanced the under-
standing of familial HLH and highlighted the impor-
tance of distinguishing between inherited (primary) and 
acquired (secondary) forms of the syndrome.
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The main clinical manifestations of HLH include 
fever, hepatosplenomegaly, lymphadenopathy, cytope-
nia, hyperferritinemia, hypertriglyceridemia, hypofi-
brinogenemia and multiorgan dysfunction, which may 
also lead to neurological symptoms [4]. HLH, diag-
nosed according to the HLH-2004 criteria and HScore, 
can be classified into primary HLH (pHLH) and sec-
ondary HLH (sHLH) based on the presence of under-
lying genetic defects (Fig.  2). Primary HLH is a rare 
but severe genetic immune system disorder, primar-
ily caused by a group of genetic mutations associated 
with immune dysfunction such as LYST, SH2D1A, 
PRF1, etc [5–9]. Since allogeneic hematopoietic stem 

cell transplantation (HSCT) can effectively control the 
development of pHLH, early genetic testing to iden-
tify gene abnormalities for pHLH diagnosis is crucial 
for subsequent treatment and prognosis. On the other 
hand, patients with sHLH are believed to develop the 
syndrome as a complication triggered by various dis-
eases, such as infection, malignancy, autoimmune dis-
ease, etc. Specifically, HLH secondary to rheumatic or 
autoinflammatory diseases is also referred to as mac-
rophage activation syndrome (MAS), which is com-
monly seen in systemic juvenile idiopathic arthritis 
(sJIA), systemic lupus erythematosus (SLE), Kawa-
saki disease, and adult Still’s disease (AOSD) [10–13]. 

Fig. 1 Timeline of the history of hemophagocytic lymphohistiocytosis (HLH). The figure illustrates the key milestones in the discovery of HLH 
over the past 80 years. HLH was first described in 1939, and since then, various types of primary and secondary HLH have been defined gradually. 
Mutations in genes associated with HLH have also been progressively discovered. CHS chédiak-higashi syndrome, GS-2 griscelli syndrome type 
2, LPI lysinuric protein intolerance, X-SCID X-linked severe combined immunodeficiency, XLP-1 X-linked lymphoproliferative sisease-1, HPS-2 
hermansky–pudlak syndrome 2, XLP-2 X-linked lymphoproliferative disease-2, HIDS hyper-IgD syndrome, MKD mevalonate kinase deficiency, XLA 
X-linked agammaglobulinemia, ALPS autoimmune lymphoproliferative syndrome
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Notably, it is a prerequisite for the diagnosis of sHLH to 
exclude any mutations in these known affected genes.

The reported 1-month mortality rate was 27.7% and 
the 1-year survival rate was 50% among HLH patients, 
underscoring the urgent need for the development of 
HLH treatment [14, 15]. The HLH-94 regimen remains 
to be the first-line treatment for controlling acute inflam-
mation in HLH, but the therapeutic resistance and mor-
tality rates are still clinically unacceptable [16, 17]. For 
pHLH patients with clear HLH-related genetic mutations 

or those with relapsed and refractory HLH, HSCT can be 
an option. However, progress in HLH treatment has been 
limited over the past decades, largely due to the unclear 
pathogenesis of HLH. For both primary and secondary 
HLH, the key treatment goal is to control the excessive 
secretion of inflammatory cytokines, including interleu-
kin-2 (IL-2), IL-6, IL-18, interferon-γ (IFN-γ), etc. There-
fore, targeting the inflammatory cytokines to inhibit the 
cytokine storm is one of the important treatment strate-
gies for HLH. In 2018, the monoclonal antibody targeting 

Fig. 2 Diagnostic process for hemophagocytic lymphohistiocytosis (HLH). This figure illustrates the diagnostic strategy for HLH, from initial clinical 
suspicion to differential diagnosis. One recent pHLH diagnostic guideline recommended incorporating functional testing of NK cells and cytotoxic 
T cells into the FHL diagnostic criteria, and proposed that the HLH-2004 criteria without testing NK cell function had a higher diagnostic accuracy 
for FHL at 99.0% (sensitivity 96.2%; specificity 99.5%) [464]. It is noteworthy that HLH can be the initial presentation of an undiagnosed malignancy, 
and malignancy-associated HLH typically indicates a poor prognosis [465]. The diagnosis of HLH still primarily relies on the HLH-2004 criteria, 
which often lack specificity in differentiating HLH from other hyperinflammatory disorders, especially in the context of malignancy. Therefore, 
the importance of imaging studies and biopsies should be emphasized, and all HLH patients may need to undergo tumor screening, and treating 
the primary malignancy is crucial for improving prognosis. MAS macrophage activation syndrome, LDH lactate dehydrogenase, EBV epstein-barr 
virus, PET-CT positron emission tomography-computed tomography, ANA Antinuclear Antibody, ENA extractable nuclear antigen, ANCA 
anti-neutrophil cytoplasmic antibody, FHL familial hemophagocytic lymphohistiocytosis, XLP X-linked lymphoproliferative disease, XIAP X-linked 
inhibitor of apoptosis protein, CMV cytomegalovirus, HIV human immunodeficiency virus, sJIA systemic juvenile idiopathic arthritis, SLE systemic 
lupus erythematosus, AOSD adult-onset still’s disease, AST aspartate aminotransferase, Hgb hemoglobin, Plt platelet, Abs Neut absolute neutrophil 
count
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IFN-γ, emapalumab, has gained global approval for the 
treatment of HLH, marking the beginning of targeted 
therapies for HLH [18].

Hence, considering the delay in exploring HLH diagno-
sis and treatment, this review aims to provide a compre-
hensive overview of the preclinical and clinical advances 
in HLH therapy, highlighting potential innovative strat-
egies targeting inflammatory cytokines and related key 
molecules. A deep understanding of potential therapeutic 
targets for HLH can further guide the design of clinical 
trials and help elucidate their roles in HLH development 
and disease control.

HLH pathogenesis
Regardless of whether HLH is the primary or second-
ary subtype, its pathogenesis and development involve 
a series of proinflammatory cytokines such as IFNγ, 
IL-1β, IL-6, IL-18, and TNF-α. T cells, NK cells and mac-
rophages are predominantly responsible for the increased 
secretion of these inflammatory cytokines. However, 
despite having a hyperinflammatory storm similar to the 
cytokine release syndrome [19, 20], the specific patho-
genic mechanisms of HLH remain not well understood. 
Nearly all types of HLH patients showed similar clinical 
manifestations, characterized by a systemic hyperinflam-
matory syndrome caused by a cytokine storm, leading to 
widespread tissue damage and multi-organ failure [21].

Under the normal condition, NK cells and cytotoxic 
T cells (CTLs) recognize target cells upon contact and 
form an immunological synapse, which then direction-
ally release perforin and granzymes through exocytosis 
(Fig.  3) [22–25]. Perforin forms pores in the cell mem-
brane, allowing granzymes to enter the target cell, trig-
gering a series of enzymatic reactions that ultimately lead 
to apoptosis of the target cell [25]. However, in patients 
with pHLH, mutations in genes related to granule release 
function (such as PRF1, UNC13D, STX11, and STXBP2) 
prevent NK/cytotoxic T cells from effectively eliminat-
ing infected or abnormal cells, thereby prolonging the 
existence of the immunological synapse and leading to 
excessive production of inflammatory cytokines [26–28]. 
Simultaneously, the immune cells with impaired granule 
function fail to terminate the activation of antigen-pre-
senting cells (macrophages, monocytes, and dendritic 
cells), resulting in sustained activation and prolifera-
tion of T cells, which further produce pro-inflammatory 
cytokines like IFNγ, thus forming a cytokine storm [29]. 
Although patients with sHLH do not usually have lym-
phocyte dysfunction caused by genetic abnormalities, 
the cytokine storm is usually triggered by external factors 
like infections, malignancies or autoimmune diseases 
that lead to excessive activation of macrophages (Fig. 3).

Currently reported HLH-related genes can be broadly 
classified into the following categories: Familial HLH 
genes (PRF1 [5], UNC13D [30], STX11 [31], STXBP2 
[32]), X-linked lymphoproliferative disease genes 
(SH2D1A [33], XIAP [34]), pigment abnormality genes 
(LYST [35], RAB27A [35], AP3B1 [36]), immune defi-
ciency genes (IL2RG [37], WAS [38], CGD [39], BTK [40], 
ITK [41], FAS [42], NLRC4 [43], CD27 [44], CDC42 [45], 
ZNFX1 [46], deletion of 22q11.2 [47]), and some inborn 
errors of metabolism genes (SLC7A7 [48], PNP [49], 
MVK [50], ADA [51]). Genes affecting cellular degranu-
lation include Familial HLH genes and pigment abnor-
mality genes. Mechanisms of HLH caused by mutations 
in genes that do not affect degranulation mainly involve 
altering the function, proliferation and signal transduc-
tion of immune cells, rather than directly inhibiting the 
release of cytotoxic granules.

HLH therapy
Remission induction
The treatment of HLH is primarily divided into two 
phases: controlling excessive inflammation and replac-
ing the defective immune system. The standard treat-
ment for the first phase is based on chemotherapy 
with etoposide (HLH-94 treatment protocol), while 
the second phase typically involves achieving remis-
sion through allogenic HSCT (allo-HSCT) following 
myeloablative/reductive conditioning [52]. In the early 
1990s, researchers from the International Histiocyte 
Society proposed a treatment regimen consisting of 
etoposide and corticosteroids (HLH-94), suggesting 
the use of etoposide (150 mg/m2 intravenous injection, 
twice weekly during weeks 1–2, then weekly during 
weeks 3–8) in combination with dexamethasone [53]. 
This regimen significantly improved the survival rate 
of HLH patients [54], which has become the standard 
therapy for all types of HLH/MAS with lymphocytes 
and macrophages hyperactivated. Glucocorticoids can 
suppress the activation, differentiation and chemot-
axis of inflammatory cytokines, thus controlling HLH 
characterized by excessive release of inflammatory 
cytokines. Etoposide is a widely used chemotherapeu-
tic agent that inhibits topoisomerase II, and its mecha-
nism for HLH treatment may involve effectively and 
selectively eliminating activated T cells and inhibit-
ing the production of inflammatory cytokines [55, 56]. 
Subsequently, the HLH 2004 trial was conducted, sug-
gesting that adding cyclosporine to the HLH-94 regi-
men did not help control acute immune activation [57]. 
The early response to etoposide could quite effectively 
predict the later mortality rate, but a small fraction 
of patients did not respond well [58, 59]. A potential 



Page 5 of 37Wu et al. Journal of Hematology & Oncology          (2024) 17:106  

drawback of etoposide-based therapy is bone marrow 
suppression, with some patients experiencing invasive 
fungal or bacterial infections during treatment.

About 30% of HLH patients did not respond to the 
standard HLH-94 protocol, and lower than 60% of 
them achieved disease-free survival through this regi-
men [60]. Previous studies suggested that the L-DEP 
regimen (PEG-asparaginase combined with liposo-
mal doxorubicin, etoposide, and methylprednisolone) 
showed some efficacy as salvage therapy for refractory 
Epstein-Barr virus (EBV)-related HLH, achieving an 
overall response rate (ORR) of approximately 80% and a 
significant reduction in EBV-DNA load [61–63]. How-
ever, a significant decrease in early EBV-DNA load did 
not predict better long-term outcomes; therefore, once 

complete remission is achieved, allo-HSCT should be 
promptly considered [61].

Allogeneic hematopoietic stem cell transplantation
Although chemotherapy based on the HLH 94/04 
protocol can be used for initial treatment, allo-HSCT 
remains to be the only potentially curative treatment 
for HLH [64]. However, when transplantation is per-
formed in patients with active disease, allo-HSCT 
appears to be associated with adverse outcomes. Lai 
et al. reported in 2018 that the survival rate was higher 
than 50% when patients underwent allo-HSCT after 
achieving remission; however, the survival rate was 
only 33% when patients had active HLH before allo-
HSCT [65]. It was reported that a reduced-intensity 

Fig. 3 Schematic diagram of the pathogenesis of hemophagocytic lymphohistiocytosis (HLH). The impaired ability of natural killer cells 
and cytotoxic T cells to secrete perforin and granzyme results in defective clearance of target cells, leading to sustained immune cell activation 
and excessive production of cytokines such as interleukin-1 (IL-1), IL-6, IL-18, and tumor necrosis factor-α (TNF-α). The intense pro-inflammatory 
response mediated by macrophages may also be due to increased production of autoantibodies and immune complexes, resulting in abnormal 
immune system activation and subsequently persistent inflammatory reactions. Infections, malignancies, and immune checkpoint inhibitors 
can also lead to excessive immune system activation, causing hyperactivity of macrophages and T cells, which release large amounts 
of pro-inflammatory cytokines, resulting in a cytokine storm
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conditioning (RIC) regimen seemed to be more ben-
eficial [66, 67]. Moreover, utilizing early alemtuzumab 
before RIC regimen had great tolerability and efficacy 
[66, 67].

However, it is important to be vigilant that HLH 
can also occur post allogeneic and autologous HSCT, 
especially associated with graft-versus-host dis-
ease (GVHD) in patients undergoing allo-HSCT [68, 
69]. HLH typically occurs in the early phase, within 
2–6 weeks post allo-HSCT [70]. Infections, particularly 
EBV and cytomegalovirus (CMV), can be triggering 
factors for HLH. Mortality rates were found obviously 
high in patients with HLH secondary to infections [71]. 
Multicenter studies reported an estimated incidence of 
HLH post allo-HSCT at 1.09%, significantly lower after 
autologous HSCT at 0.15% [72].

Gene therapy and adoptive T cell therapy
Gene therapy, utilizing virus vector-mediated gene 
transfer into autologous hematopoietic stem cells, has 
been demonstrated to cure various severe monogenic 
immunodeficiencies [73, 74]. One preclinical studies 
in  Prf−/− mouse models suggested a significant correc-
tion of cytotoxic defects both in vitro and in vivo upon 
transplantation of PRF1 gene-corrected hematopoietic 
stem cells and  CD8+ T cells [75, 76]. Jinx mice were 
used as a preclinical mouse model for familial HLH 3 
(FHL3). Studies showed that transferring the lentivi-
ral UNC13D gene into Jinx hematopoietic stem cells 
(HSCs) could restore T cell function in transplanted 
Jinx mice [77, 78]. Moreover, using lentivirus as a vec-
tor restored Munc13-4 expression and degranulation 
capacity in T cells from FHL3 patients and HSCs from 
FHL3 disease model mice [78]. The further research 
demonstrated that effective gene editing of Jinx mouse 
HSCs resulted in functional T cell responses with a 
diverse T cell receptor (TCR) repertoire, exhibiting 
rapid virus clearance and protection against HLH [74]. 
In X-linked lymphoproliferative disease (XLP)-1 mouse 
models, HSC gene correction was also able to improve 
the immunological manifestations of the disease and 
overcome HSCT-related complications [79].

Adoptive T cell therapy (ATCT) was found to be able 
to partially restore cellular cytolytic activity in HLH. 
Kristoffer et  al. transferred functional virus-specific T 
cells into mice models of pHLH  (Prf−/− mice and Jinx 
mice) [80]. The transferred T cells eliminated HLH-
inducing viral triggers, silenced disease processes, 
cured excessive inflammation in Jinx mice and pro-
tected HLH mice from fatal HLH progression, without 
life-threatening side effects. The cured mice were able 
to avoid HLH recurrence in the long term [80].

Therapy for CNS‑HLH
Primary HLH may present with isolated neurological 
symptoms, which can occur months before the appear-
ance of systemic manifestations of HLH [81]. Therefore, 
performing a lumbar puncture for screening is neces-
sary to differentiate the central nervous system involve-
ment of HLH (CNS-HLH) from similar conditions such 
as demyelinating syndromes, chronic infections, malig-
nancies and CNS vasculitis. For CNS-HLH patients, in 
addition to the systemic treatment, intrathecal injections 
of methotrexate and dexamethasone can be additionally 
performed. Receiving HSCT after the systemic treatment 
of HLH appears to be crucial for improving survival and 
neurological outcomes [82].

Emerging targeted therapy and mechanisms 
for HLH
In 20–30% of adult cases, HLH is refractory to first-
line treatment or relapses after initial remission [83]. 
There is still lack of standardized treatment approach 
for relapsed/refractory pHLH patients, and cure is often 
achieved only through allo-HSCT, but approximately 
20–25% of HLH patients died before transplantation [60, 
84, 85]. It is worth mentioning that treatment delay was 
reported to be an independent poor prognostic factor for 
HLH, reflecting the importance of early selection of the 
appropriate treatment to break the cycle of immune dys-
regulation [86].

Due to the critical role of excessive immune activa-
tion and elevated cytokinemia in the pathogenesis of 
HLH, several targets have been proposed in recent years, 
including IFN-γ, Janus kinase-signal transducer and acti-
vator of transcription (JAK-STAT), IL-6, TNF-α, IL-1, 
IL-18, CD52, CD20 and programmed cell death protein 
1 (PD-1) (Fig. 4). Preclinical studies and clinical investi-
gations, including clinical trials and exploratory clinical 
studies, concerning the aforementioned targets were also 
compiled and summarized (Tables 1, 2, 3, 4).

Targeting IFN‑γ
IFN-γ, belonging to type II interferons, is a soluble 
cytokine produced by T lymphocytes, macrophages, 
NK cells, and other immune cells [87]. The production 
of IFN-γ is mainly regulated by cytokine stimulation 
(such as IL-18), antigen stimulation, and other immune 
stimuli [88, 89]. IFN-γ can bind to the IFN-γ receptor 
(IFNGR), activate the JAK-STAT pathway and induce the 
expression of IFN-γ-stimulated genes, playing impor-
tant roles in tissue homeostasis, immunity, inflammation 
and tumor immune surveillance [87, 90]. IFN-γ binds to 
its cell surface receptor IFNGR1 and induces IFNGR1 
dimerization, then binding to two IFNGR2 to form a 
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receptor complex. In this receptor complex, IFNGR1 
activates the JAK1 kinase, while IFNGR2 activates the 
JAK2 kinase [91]. Activation of JAK1 and JAK2 can lead 
to receptor phosphorylation, recruiting and phospho-
rylating STAT1 [91, 92]. Phosphorylated STAT1 forms 
dimers and trans-locates to the nucleus, where it can bind 
to the Gamma-activated sequence (GAS) in the promoter 
region of target genes, thereby regulating the transcrip-
tion of downstream genes [93]. Many genes regulated 
by the IFN-γ/STAT1 signaling pathway are transcrip-
tion factors, thus the IFN-γ/STAT1 signaling pathway 
indirectly regulates the expression of more downstream 
genes [94]. Meanwhile, the IFN-γ/STAT1 signaling path-
way can activate MAPK, PI3K-AKT, and NF-κB signaling 
pathways, enabling IFN-γ/STAT1 to participate in the 
regulation of the expression of more genes [95].

The loss of cytotoxic function in  CD8+ T cells can 
lead to immune imbalance, promoting abnormal and 
excessive production of IFN-γ [96]. IFN-γ is a classical 
activator of macrophages and mediates polarization of 
macrophages towards the M1 phenotype [87, 96]. M1 

macrophages exhibit strong pro-inflammatory properties 
and release inflammatory mediators such as IL-1β, IL-6, 
TNF-α, etc [97, 98]. Peripheral levels of IFN-γ were ele-
vated in both primary and secondary HLH patients, with 
its levels correlating with clinical status, being elevated in 
active HLH but lower than detection levels in remission 
patients and healthy controls [99, 100]. Furthermore, one 
research has shown that IFN-γ was associated with liver 
function damage and coagulation disorders, and could 
directly act on macrophages in vivo, altering phagocytic 
activity and stimulating blood cell uptake, leading to 
severe anemia [100–102].

In one pre-clinical study, the anti-IFN-γ antibody sig-
nificantly improved bone marrow function and survival 
in perforin-deficient mice after lymphocytic choriomen-
ingitis virus (LCMV) infection [103]. In a mouse model 
of CpG DNA induced sHLH, the development of HLH 
was also found to be IFN-γ dependent [104]. However, 
the efficacy of anti-IFN-γ antibody in secondary HLH 
murine models is limited, possibly due to the distinct bio-
logical mechanisms between pHLH and sHLH [105].

Fig. 4 Schematic representation of targeted therapy for hemophagocytic lymphohistiocytosis (HLH). HLH is a syndrome characterized by excessive 
immune activation. Therapeutic strategies to mitigate inflammatory responses involve the inhibition of key cytokines and signaling pathways. EBV 
epstein-barr virus
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Emapalumab is a fully human IgG1 monoclonal anti-
body targeting IFN-γ, capable of binding both free-form 
and receptor-bound IFN-γ (inhibiting receptor dimeri-
zation and IFN-γ signal transduction) and neutraliz-
ing its biological activity [106]. It is the first targeted 
therapy approved for HLH treatment, especially benefi-
cial to patients unresponsive to conventional treatment 
[106, 107]. A phase 2–3, open-label, single-group study 
demonstrated that 27 relapsed/refractory (r/r) pHLH 
patients treated with a combination of emapalumab, 

dexamethasone and others achieved a remission rate 
of 63%, with a low incidence rate of adverse events 
[108]. Another potential advantage of IFN-γ blockade 
therapy for pHLH may be its ability to improve engraft-
ment in allo-HSCT, preventing and treating graft failure 
[109–111]. In a prospective single-arm trial involving 14 
patients with treatment-refractory HLH/ MAS who did 
not respond to high-dose corticosteroids (with or without 
anakinra), all clinical and laboratory parameters showed 
rapid improvement after treatment with anti-IFN-γ 

Table 1 Targeted therapy for hemophagocytic lymphohistiocytosis (HLH) in ongoing clinical trials

IFN-γ interferon-γ; JAK1/2 Janus kinase 1/2; IL-1 interleukin-1; IL-6 interleukin-6; IL-18 interleukin-18; PD-1 programmed death 1; IL-1β interleukin-1 
beta; R/R relapsed/refractory; MAS macrophage activation syndrome; Allo-HSCT allogeneic hematopoietic stem cell transplant; EBV Epstein-Barr virus; 
GTP emapalumab + teniposide + methylprednisolone; ED etoposide + dexamethasone; Dex dexamethasone; RUE-DDGP Ruxolitinib + Etoposide + cis-
platinum + Dexamethasone + Gemcitabine + Pegaspargase; Flu + Mel + Alem + thiotepa fludarabine + melphalan + alemtuzumab + thiotepa; DEP liposomal 
doxorubicin, etoposide, and methylprednisolone; L-DEP PEG-asparaginase combined with liposomal doxorubicin, etoposide, and methylprednisolone; IL-18BP IL-18 
binding protein

Target NCT Number HLH type Interventions Phase No. Patient Start Date Study status

IFN-γ NCT06038422 R/R HLH GTP 3 15 2023/9/15 Not yet recruiting

IFN-γ NCT05744063 Primary HLH Emapalumab 4 13 2023/2/3 Active not recruiting

IFN-γ NCT05001737 MAS Emapalumab 3 41 2021/12/15 Recruiting

JAK1/2 NCT06244862 Severe HLH Ruxolitinib 2 42 2024/2/1 Not yet recruiting

JAK1/2 NCT06160791 HLH Ruxolitinib + ED 2 36 2024/2/1 Not yet recruiting

JAK1/2 NCT05762640 Primary HLH Ruxolitinib 2 20 2024/3/1 Not yet recruiting

JAK1/2 NCT05491304 Pediatric HLH Ruxolitinib + ED 4 400 2022/9/1 Recruiting

JAK1/2 NCT05137496 MAS Ruxolitinib + methylpredni-
solone

3 40 2022/6/1 Not yet recruiting

JAK1/2 NCT04999878 Lymphoma-associated HLH RUE-DDGP 4 30 2021/5/30 Recruiting

JAK1/2 NCT04551131 HLH Ruxolitinib + ED 1/2 62 2021/7/13 Recruiting

JAK1/2 NCT04120090 R/R HLH ruxolitinib 3 80 2019/7/1 Unknown

JAK1/2 NCT03795909 R/R HLH Ruxolitinib + Dex 1/2 50 2017/3/1 Unknown

JAK1 NCT05063110 Non-severe HLH Itacitinib 2 63 2022/5/1 Recruiting

JAK2 NCT04326348 HLH TQ05105 1 40 2020/7/17 Unknown

IL-6 NCT02007239 HLH Tocilizumab 2 NA 2013/12/1 Withdrawn

IL-1 NCT02780583 MAS Anakinra 1 40 2016/5/15 Active not recruiting

IL-18 NCT03512314 NLRC4-MAS, XIAP Deficiency Tadekinig alfa (IL-18BP) 3 10 2018/1/24 Active not recruiting

CD52 NCT01821781 HLH Conditioning regi-
men before HSCT: 
Flu + Mel + Alem + thiotepa

2 20 2013/3/1 Recruiting

CD20 NCT05384743 EBV-HLH Rituximab 3 30 2022/2/1 Unknown

CD20 NCT05258136 EBV-HLH CD20 monoclonal antibody NA 20 2021/6/1 Enrolling by invitation

PD-1 NCT05008666 ENKTL-HLH Sintilimab + chidamide + azac-
itidine

2 37 2021/12/1 Unknown

PD-1 NCT05775705 HLH PD-1 antibody + L-DEP 3 25 2023/8/1 Not yet recruiting

PD-1 NCT05315336 HLH PD-1 antibody + L-DEP 3 50 2022/6/1 Not yet recruiting

PD-1 NCT05164978 HLH PD-1 antibody + DEP NA 20 2021/5/1 Unknown

PD-1 NCT05039580 HLH PD-1 antibody + L-DEP 4 36 2021/5/15 Unknown

PD-1 NCT04084626 HLH PD-1 antibody + lenalidomide 3 40 2019/9/15 Unknown

PD-1 NCT04944511 HLH after allo-HSCT Toripalimab NA 20 2021/7/1 Unknown

PD-1 NCT04690036 EBV-HLH after transplantation Toripalimab 1 20 2021/7/1 Unknown

IL-18 + IL-1β NCT04641442 NLRC4-GOF, XIAP Deficiency, 
CDC42 Mutations

MAS825 (anti-IL-1β/IL-18) 2 18 2020/12/18 Recruiting
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[112]. By week 8, 13 out of 14 patients achieved remis-
sion within a median time of 25 days [112]. Therefore, 
emapalumab may be an important additional treatment 
option for HLH, and patients often respond well to it, 
which is helpful in gradually discontinuing steroids [113]. 
When used in combination with etoposide, there is rarely 
a need for etoposide administration more frequently than 
once a week or every two weeks [113].

Patients with HLH often have concurrent infections. 
There have been case reports of refractory HLH patients 
with multiple severe and complicated infections that 
were treated with emapalumab and supportive antimi-
crobial therapy [114, 115]. Following this treatment regi-
men, all clinical symptoms and laboratory parameters 
gradually became normalized. Additionally, in patients 
with HLH complicated by severe infection, the inhibition 

Table 2 Targeted therapy and associated results for hemophagocytic lymphohistiocytosis (HLH) in completed clinical trials

IFN-γ interferon-γ; JAK1/2 Janus kinase 1/2; IL-18 interleukin-18; IL-1 interleukin-1; IL-6 interleukin-6; MAS macrophage activation syndrome; R/R relapsed/refractory; 
HSCT hematopoietic stem cell transplant; DEX dexamethasone; DEP liposomal doxorubicin, etoposide, and methylprednisolone; IL-18BP IL-18 binding protein; 
Flu + Mel + Alem fludarabine + melphalan + alemtuzumab; ATG  Anti-Thymocyte Globulin; Ara-C cytarabine; CTX cyclophosphamide; TBI Total Body Irradiation; ORR 
overall response rate; CR complete response; PR partial response; OS overall survival; NA not available

Target NCT number HLH type Interventions Phase No. patient Start date Last update 
posted

Outcome

IFN-γ NCT01818492 Primary HLH NI-0501 (Anti-IFNγ 
mAb) + glucocorticoster-
oid, HSCT

2/3 34 2013/7/1 2023/2/21 ORR 53%, CR 21%, 
PR 32%

IFN-γ NCT02069899 Primary HLH Emapalumab, HSCT 2/3 34 2014/8/4 2022/6/28 ORR 47%, CR 21%, 
PR 26%, 1-year OS 
71%

IFN-γ NCT03312751 Primary HLH Emapalumab, HSCT 3 35 2019/2/6 2024/3/12 ORR 42.8%, CR 
11.4%, PR 31.4%, 
1.5-year OS 54.3%

IFN-γ NCT03311854 MAS Emapalumab 2 14 2018/2/20 2022/5/17 ORR 93%, 1-year OS 
100%

IFN-γ NCT03985423 HLH Emapalumab 2/3 NA 2020/6/2 2023/10/6 NA

JAK1/2 NCT02400463 Secondary HLH Ruxolitinib + Dex 2 5 2016/2/5 2021/1/25 ORR 100%, CR 60%, 
PR 40%, 2-mouth 
OS 100%

JAK1/2 NCT03533790 R/R HLH Ruxolitinib-DEP 3 54 2018/6/1 2018/5/30 Excluding 12 
patients who had 
previously received 
DEP: ORR 78%, CR 
19.5%, PR 58.5%
R/R HLH patients 
who had previously 
received DEP: PR 
58.3%

IL-18 NCT03113760 NLRC4-MAS, XIAP 
Deficiency

Tadekinig alfa (IL-18BP) 3 NA 2017/7/21 2024/2/2 NA

CD52 NCT01998633 HLH Conditioning regi-
men before HSCT: 
Flu + Mel + Alem

2 34 2013/12/1 2022/12/8 1.5-year OS 68%

CD52 NCT02472054 HLH Alemtu-
zumab + MP + CSA

1/2 NA 2015/6/29 2021/4/15 NA

CD52 NCT00368355 HLH Conditioning regi-
men before HSCT: 
Ara-C + CTX + Alem + TBI

2 NA 2000/4/1 2020/1/21 NA

CD52 NCT00176865 HLH Conditioning regi-
men before HSCT: 
Flu + Mel + Alem/ATG 

2 19 2002/8/1 2017/12/28 1-year OS 68.4%

IL-1/IL-6 NCT04339712 COVID-19-associ-
ated MAS

Anakinra or Tocilizumab 2 NA 2020/4/2 2021/1/11 NA

CD52/IL6 NCT02385110 HLH Alemtuzumab/
Tocilizumab + Etopo-
side + Dexamethasone

2 18 2015/9/23 2024/1/17 7-year OS 
50%/42.75%

IL-1 + IL18 NCT06309823 XIAP Deficiency MAS825 3 NA 2023/2/8 2024/3/13 NA
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of the inflammatory state by blocking IFN-γ allowed for 
discontinuation of conventional immunosuppressive 
therapy, aiding in infection control [115].

In terms of drug safety, emapalumab dosages can be 
gradually increased from 1 to 10  mg/kg twice weekly 
based on patient tolerance and clinical progress [116]. 
Prior to administering emapalumab infusions, latent 
tuberculosis infection should be excluded through 
interferon-γ release assays, and EBV and CMV infections 
should be monitored every two weeks [117]. Addition-
ally, the adjunctive use of acyclovir and trimethoprim-
sulfamethoxazole should be considered to prevent herpes 
zoster and pneumocystis jirovecii infections [117, 118].

However, LCMV infection in IFN-γ−/− and  Prf1−/− 
mice still result in severe HLH-like state, suggesting that 
the driving cytokines for human HLH are not limited to 
IFN-γ [119]. Therapies targeting upstream activators of 
 CD8+ T cells, such as interleukin-33/ST2 signaling, can 
be considered [119]. Additionally, in previous reports, 
HLH patients often received combination therapy rather 
than IFN-γ monoclonal antibodies alone. It is conceiv-
able that solely inhibiting IFN-γ may not be sufficient to 
control the disease in the majority of patients. Targeting 
multiple cytokines simultaneously may be considered, 
but further clinical trials are warranted for validation 
[120].

Targeting JAK‑STAT 
The classical JAK-STAT pathway transduces extracellu-
lar signals activated by cytokines to the nucleus, medi-
ating gene expressions and playing indispensable roles 
in a range of cellular processes, particularly those with 
immunomodulatory functions [121, 122]. The JAK family 
comprises a group of tyrosine kinases associated with cell 
signal transduction, primarily consisting of four mem-
bers: JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2). 
JAK1, JAK3 and TYK2 are responsible for immune sys-
tem development and regulation, while JAK2 primar-
ily participates in hematopoiesis, playing crucial roles 
in erythrocyte and platelet production [123–125]. The 
enzymatic function of JAK is activated by the binding 
of cytokines to their receptors. Cytokine-activated JAK 
phosphorylates tyrosine residues of each other and the 
intracellular tails of receptor subunits, thereby creating 
docking sites to recruit downstream signaling molecules 
[126]. A key subset of substrates binding to phosphoryl-
ated cytokine receptors is the STAT family of DNA-bind-
ing proteins. Receptor-bound STATs are phosphorylated 
by JAK, dimerize, and translocate to the nucleus, where 
they bind to DNA, activating gene transcription [121]. 
Mammals have seven STATs: STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B, and STAT6 [127]. Through 
selective binding to cytokine receptors, different 

cytokines have the ability to preferentially recruit differ-
ent STATs [128, 129].

In HLH patients, the JAK-STAT signaling pathway can 
be aberrantly activated due to immune dysregulation. 
Elevated cytokines in HLH, such as IFN-γ, IL-2, IL-6, 
IL-10, IL-12 and granulocyte–macrophage colony-stim-
ulating factor (GM-CSF), can all signal through the JAK-
STAT pathway [129]. By inhibiting downstream signaling 
of many HLH-related cytokines, such as the JAK-STAT 
pathway we discussed here, it is possible to effectively 
alleviate the immune response associated with HLH. Sev-
eral JAK inhibitors, such as ruxolitinib, tofacitinib, barici-
tinib and oclacitinib, have been used in the treatment 
of inflammatory diseases [130]. Preclinical study have 
indicated that the JAK1/2 inhibitor ruxolitinib was more 
effective in treating HLH compared to the JAK1 inhibitor 
itacitinib and the JAK2 inhibitor fedratinib [131].

Ruxolitinib is an orally administered, potent and highly 
bioavailable JAK1/2 inhibitor, approved by the Food and 
Drug Administration (FDA) for patients with myelopro-
liferative neoplasms and steroid-refractory GVHD [132, 
133]. Some studies using ruxolitinib to treat  Prf1−/− or 
 Rab27a−/− mice infected with LCMV (pHLH model; 
Table  3), as well as wild-type mice exposed to repeated 
injections of CpG DNA (sHLH model), have demon-
strated that monotherapy with ruxolitinib reversed a 
series of HLH manifestations and significantly prolonged 
survival [134–136]. Both Ruxolitinib and the anti-IFN-γ 
antibody improved hemoglobin levels, but only ruxoli-
tinib significantly reduced the number and activation sta-
tus of immune cells, thus decreasing the frequency and 
absolute numbers of infiltrating  CD8+ cells, monocytes 
and neutrophils [105]. Using the pHLH mouse model 
 (Prf1−/− mice), the combination of ruxolitinib (4  mg/
kg, twice a day) with low-dose anti-IFN-γ antibodies 
(200  μg per mouse, every 3  days) showed a synergistic 
effect, effectively alleviating HLH manifestations [137]. 
However, studies have also shown that higher doses of 
ruxolitinib (90  mg/kg, twice daily) combined with anti-
IFN-γ antibodies (500  µg or 1  mg, administered once 
every 3–4 days) did not provide superior anti-inflamma-
tory benefits compared to their individua use [138, 139]. 
Therefore, caution should be exercised when combining 
these two classes of drugs, especially when higher doses 
are used [138, 139]. Exploratory studies of combination 
therapy with dexamethasone and ruxolitinib have found 
that by blocking cytokine signaling, ruxolitinib can sen-
sitize  CD8+ T cells to dexamethasone-induced apoptosis 
in  vitro, effectively overcoming cytokine-induced dexa-
methasone resistance [136].

For patients with r/r HLH, ruxolitinib has shown 
promising efficacy in improving the inflammatory state. 
A study described the use of ruxolitinib in combination 
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with corticosteroids to treat 34 patients with r/r HLH 
(median age 27.5  years; 1 case of FHL2, 25 cases of 
EBV-HLH, 2 cases of HLH/MAS, 6 cases unclear) [140]. 
After two weeks of treatment, ferritin and sCD25 lev-
els significantly decreased, indicating an improvement 
in the inflammatory state. The ORR was evaluated to be 
73.5%, with complete response (CR) in 14.7% and par-
tial response (PR) in 58.8% [140]. However, for patients 
with EBV-HLH, EBV-DNA levels remained unchanged, 
suggesting that ruxolitinib reduced inflammation with-
out targeting the underlying cause of HLH, thereby still 
necessitating the need for allo-HSCT [140, 141]. Another 
study including 41 r/r HLH patients who had not previ-
ously received the DEP or L-DEP regimen showed an 
ORR of 78.0% with Ru-DEP (ruxolitinib-DEP) treatment 
[142]. A total of 8 cases (19.5%) achieved CR and 24 
cases (58.5%) achieved PR. The CR rate with Ru-DEP was 
higher than with ruxolitinib monotherapy (14.7%) [142]. 
Although the response rate with the Ru-DEP regimen 
(76.2%) was similar to that observed in adult patients 
with refractory HLH treated with DEP in previous stud-
ies, 7 cases still achieved PR (58.3%) among the 12 HLH 
patients who had failed or relapsed after prior DEP or 
L-DEP treatment [142]. Some studies have also reported 
the efficacy of ruxolitinib in suppressing the inflam-
matory state in pHLH patients, potentially making it a 
safe bridge therapy for refractory HLH undergoing allo-
HSCT [141, 143, 144].

For HLH patients with severe infections, ruxolitinib 
also demonstrated promising efficacy. Sostad et  al. and 
Zandvakili et  al. reported that two cases of sHLH with 
severe fungal infections showed clinical improvement 
after receiving ruxolitinib and antimicrobial agents as 
first-line treatment [145, 146]. Additionally, ruxolitinib 
also showed favorable outcomes in treating patients with 
malaria-, tuberculosis-, HIV-, SLE- and lymphoma-asso-
ciated HLH [147–150]. There were also case reports of 
patients with central nervous system-involved r/r HLH 
achieving remission after receiving emapalumab com-
bined ruxolitinib, followed by transplantation [151].

Overall, ruxolitinib is effective in inflammation control, 
but cannot eradicate the underlying cause. Neverthe-
less, allo-HSCT should still be considered the ultimate 
treatment following ruxolitinib. During drug adminis-
tration, caution should be exercised regarding the side 
effects associated with JAK inhibitors, which may be 
related to off-target effects [152]. The use of JAK inhibi-
tors increases the risk of severe and opportunistic infec-
tions, with reactivation of varicella-zoster virus being one 
of the most common infectious complications [152]. JAK 
inhibitor therapy further leads to anemia and decreased 
counts of lymphocytes, NK cells, neutrophils and plate-
lets, possibly due to the inhibition of signaling pathways 

by cytokines such as JAK2 (e.g., erythropoietin, throm-
bopoietin) and other hematopoietic growth factors (e.g., 
IL-6 and IL-11) [139]. During usage, a balance between 
the therapeutic effects of the disease and the risks of 
side effects should be considered, ensuring that patients 
receive optimal treatment outcomes while minimizing 
adverse reactions.

Targeting IL‑6
IL-6 is a core participant involved in acute inflammatory 
responses, which mediates the acute phase responses 
during the immune defense and induces the production 
of inflammation-related biomarkers such as C-reactive 
protein and procalcitonin [153, 154]. In addition, IL-6 
can be used for diagnosis of early inflammation and pro-
vide an early warning for the occurrence of sepsis [155–
157]. Upon encountering pathogen-associated molecular 
patterns (PAMPs) or damage associated molecular pat-
terns (DAMPs), a variety of innate immune cells such as 
macrophages and monocytes rapidly initiate the expres-
sion and release of IL-6 to eliminate infected cells or 
damaged tissue [158–160]. IL-6 is mainly activated by 
the signals of IL-1β and TNF-α, with positively regulating 
by a series of small molecules, including platelet-derived 
growth factor (PDGF), lipopolysaccharide (LPS), phorbol 
myristate acetate (PMA), etc. [161–166]. However, over-
production of IL-6 can also result in chronic inflamma-
tory diseases, such as SLE, rheumatoid arthritis, etc., as 
well as fetal cytokine storm-related conditions of receiv-
ing chimeric antigen receptor-T cell therapy, suffering 
severe coronavirus disease 2019 (COVID-19) and HLH 
[29, 167–172]. In sJIA patients, the increased IL-6 levels 
were associated with disease activity, in accordance with 
the high risk of HLH/MAS in this population [173, 174]. 
However, IL-6 is not elevated in HLH as significantly as 
in sepsis [99], suggesting that other pro-inflammatory 
cytokines are also critical for HLH development.

IL-6 is typically present as a monomer, and includes 
one specific binding site for IL-6 receptor (IL-6R) and 
two gp130 (signal-transducing protein) binding sites, 
responsible for its complex and extensive functions [154, 
175]. IL-6 downstream pathways can be classified into 
classical signaling, trans-signaling and trans-presenta-
tion, all of which require interactions between IL-6 and 
receptors through cytokine-binding domain, however, 
leading to distinct biological effects by different ligand-
receptor binding modes [154, 175]. Although almost all 
stromal cells, macrophages, E-selectin mesangial cells, 
tumor cells, etc. can produce IL-6, IL-6R expression is 
more restricted and specifically found in immune cells 
and response-related cells, such as neutrophils, mono-
cytes and hepatocytes, while gp130 is expressed within 
almost all cells [176–178]. Noteworthily, there are two 
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kinds of IL-6R forms, membrane-bound IL-6R (mIL-6R) 
and the circulating soluble IL-6R (sIL-6R) [179]. In the 
classical signal pathway, IL-6 binds to its receptor mIL-
6R to form a protein complex, which then associates with 
the membrane protein gp130 to initiate intracellular sig-
nal transduction [154, 180]. Cells that express gp130 but 
do not express IL-6R cannot result in the downstream 
signals of mIL-6R that are mainly responsible for regen-
eration and protection. However, the trans-signaling 
pathway is mediated via binding of IL-6-sIL-6R com-
plex to gp130 in almost all cells that express this signal 
transduction protein, leading to the formation of protein 
hexamer that activates JAK for the initiation and devel-
opment of a series of biological events that include pro-
inflammatory responses [181–184]. Summarily, JAK’s 
autophosphorylation of tyrosine residues within its 
intracellular sequence, serving as recruitment sites for 
transcription factor STAT, feedback regulator SOCS3, 
adaptor protein and phosphatase SHP2, can activate mul-
tiple downstream signals, such as STAT3, MAPK, PKB/
Akt and NF-кB pathways that are broadly involved in 
pathological conditions [181–192]. In the trans-presen-
tation pathway, mIL-6R on dendritic cells binds to IL-6, 
which is then presented to T cells expressing gp130, play-
ing a critical role for Th17 cells [193].

IL-6 is reported to drive the occurrence and develop-
ment of diseases in human autoimmunity and inflam-
mation [178]. Although IL-6 has been regarded one of 
molecules involved in the pathogenesis of HLH, its role 
and associated mechanisms remain unclear and require 
to be better studied. Current viewpoints suggest that 
the elevated IL-6 in patients with HLH may be derived 
from activated macrophages, which initiate its release 
synchronously with TNF-α and IL-1β during the early 
stage of inflammation [194–196]. One study involving 
liver tissue biopsies from five patients with MAS found 
a significant presence of activated macrophages pro-
ducing IL-6 [195]. However, another study focusing on 
cytokine release syndrome (CRS) suggested that mono-
cytes are the primary source of IL-1 and IL-6 [197]. In 
a transgenic mice model with IL-6 overexpression, pro-
longed exposure to IL-6 in vivo exacerbated the inflam-
matory responses to toll-like receptor (TLR) ligands, and 
these mice exhibited clinical manifestations similar to 
HLH [194]. Another study confirmed that IL-6 reduced 
the expression of perforin and granzymes by inhibit-
ing the cytotoxic activity of NK cells, which may be one 
of the mechanisms underlying MAS in sJIA patients 
[198]. Based on the fact that pHLH is caused by genetic 
homozygous defects in genes encoding proteins involved 
in cellular cytotoxicity, including perforin, findings on 
IL-6’s inhibition of NK cells further support the hypoth-
esis that pHLH and sHLH may share similar pathogenic 

mechanisms [198–201]. Besides, sJIA patients who 
received IL-6 blockade therapy seemed to have a lower 
incidence of MAS and significantly less severe clinical 
presentation compared to the untreated patient group 
[202, 203]. However, inflammatory response-associated 
biomarkers could be well corrected via the IL-6 blockade 
therapy in patients with refractory AOSD [204]. There-
fore, though these findings may indicate the amplifying 
effects of IL-6 on inflammatory responses and its rele-
vance to HLH onset and development, the definitive role 
of IL-6 in HLH still requires more explorations.

IL-6 has been discovered as one of key cytokines 
involved in the dysregulation of many diseases, and thus 
targeting the IL-6 pathway has resulted in a series of 
novel therapeutics for rheumatic diseases, chimeric anti-
gen receptor T (CAR-T) adoptive infusion and immune 
checkpoint blockade-related CRS, as well as COVID-19 
pneumonia and HLH [1, 19, 205–210]. Based on the evi-
dences supporting the use of IL-6 pathway inhibition in 
the treatment of COVID-19 pneumonia and CRS [19, 
153, 206, 211], which are similar to HLH in clinical char-
acteristics and surged cytokine profiles, the use of IL-6 
antagonists, such as tocilizumab, has shown some effi-
cacy in the treatment of HLH, despite the current limi-
tations of retrospective study and case report [204, 208, 
212]. By binding to IL-6R and inhibiting IL-6-mediated 
signaling, tocilizumab can serve as an alternative therapy 
for patients with HLH, especially in adults with sHLH or 
MAS, or as a salvage treatment for those with familial 
HLH who showed an inadequate response to etoposide 
and corticosteroid [204, 208, 212]. Still, there is a lack of 
clinical trials for assessing the safety and efficacy of IL-6 
blockade therapy in HLH patients, except one nonrand-
omized, interventional, parallel phase II trial that focuses 
on the tocilizumab or alemtuzumab treatment for HLH 
adults when combining with etoposide and dexametha-
sone (NCT02385110).

Targeting TNF‑α
TNF-α is a pivotal polymorphic cytokine extensively 
involved in pro-inflammatory responses, and drugs tar-
geting TNF-α for neutralization have emerged as one 
of highly effective treatments for diseases of the human 
immune system [213–217]. During the course of HLH 
occurrence and progression, a significant increase in 
serum levels of TNF-α has been observed in patients 
[218, 219] and animal models [96, 218, 220]. However, 
TNF-α seemed not to be critical in the pathogenesis of 
HLH as IL-1β, IL-6 and IL-18, but may reflect the acti-
vation degree of inflammatory responses [219]. The spe-
cific mechanisms underlying the upregulation of TNF-α 
in HLH are not fully understood, but it may be driven by 
preliminarily-elevated TLR ligands such as endotoxin or 
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cytokines [218]. During the process, a large amount of 
TNF-α and chemokines was secreted by various cell types 
via binding and induction of mature IL-18 molecules 
[221–223] and targeting IL-18 blockade could effectively 
decrease production of TNF-α and reverse hemophago-
cytosis-caused outcomes in the preclinical study [218]. In 
addition, the combination of TNF-α and IFN-γ blocking 
antibodies has been shown to provide 100% lethal protec-
tion in sHLH mice models induced by poly I:C and LPS 
attack [224, 225]. Thus, we speculate that the increased 
level of TNF-α tends to be merely one of downstream or 
intermediate events in the development of HLH, further 
promoting the activation of inflammatory response and 
tissue damage through its involvement in the cytokine 
cascades.

TNF-α exhibits complex regulatory roles of inflamma-
tion in both physiological and pathological conditions, 
particularly in autoimmune diseases [226–230]. TNF-α 
is synthesized and released by multiple kinds of cells 
such as macrophages, mononuclear cells, dendritic cells 
or lymphocytes, especially myeloid cells and activated T 
cells in response to diverse inflammatory stimuli [222]. 
Two forms of TNF-α are discovered within humans: a 
membrane-bound form (mTNF-α) capable of acting as 
a ligand or receptor, and a soluble form (sTNF-α) that 
functions as a ligand [231–233]. The 26-kDa mTNF-α 
can be converted into the 17-kDa sTNF-α by TNF-α-
converting Enzyme (TACE) [233], which can exert its 
effects throughout the whole human body after entering 
the systematic circulation [234–236]. Both mTNF-α and 
sTNF-α play crucial roles in the inflammatory response. 
However, mTNF-α primarily functions at the local cellu-
lar level, whereas sTNF-α exerts systemic effects.

TNF-α can activate numerous downstream signal-
ing pathways upon binding to its two distinct receptors, 
TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), 
which share structural similarity but possess divergent 
biological functions. TNFR1, also called tumor necrosis 
factor receptor superfamily member 1A (TNFRSF1A) 
and CD120a, can be responsible for initiating most of 
TNF-α’s physical activities [237–241]. Upon binding of 
trimeric TNF-α to TNFR1, multiple intracellular signal 
cascades are activated by recruiting several death signal-
ing proteins such as adaptor protein TNFR1-associated 
death domain (TRADD), Fas-associated death domain 
(FADD) and TNF receptor-associated factor 1 (TRAF1), 
leading to the activation of key transcription factors, such 
as NF-κB, to induce inflammation and cell apoptosis [229, 
239, 242–245]. In HLH, the dysregulation of NF-κB sign-
aling pathway contributes to the persistent activation of 
immune cells and the further production of pro-inflam-
matory cytokines as TNF-α, IL-1β, IL-6 and etc., pro-
moting the formation of vicious inflammatory cycle that 

drives the HLH development [26, 209, 246–248]. Besides, 
with the increasing understanding of TNF signaling in 
recent years, researchers have found that TNF not only 
directly drives inflammatory responses by inducing the 
expression of inflammatory genes but also indirectly 
drives inflammation by inducing cell death, trigger-
ing immune responses and promoting disease develop-
ment [249–252]. Cell death is one of the driving factors 
of inflammatory diseases, such as apoptosis, necrosis, 
and pyroptosis, which lead to the release of DAMPs and 
activate subsequent inflammatory cascades [253, 254]. 
In addition to activating the NF-κB signaling pathway 
to directly promote inflammatory responses, TNF, upon 
binding to TNFR1, can also indirectly promote inflam-
matory signaling by inducing cell death [255–259].

However, unlike TNFR1 that widely exists in various 
cell types, TNFR2 is specifically expressed in thymic T 
lymphocytes, endothelial cells, microglia, and oligoden-
drocytes [239, 260–263]. Only mTNF-α can tightly bind 
to TNFR2 and fully initiate the following cellular events 
by recruiting TRAF1 or TRAF2 adaptors to the receptor 
due to the lack of death domain [229, 242, 244, 245, 264, 
265]. The resulting activated signals involve cIAP1/cIAP2 
kinases, as well as the canonical and non-canonical 
NF-κB, JNK, and AKT pathways [229, 242, 244, 245, 264, 
265]. In spite of its activations for cell survival and prolif-
eration by upregulation of PI3K/AKT pathway [266], the 
interaction between mTNF-α and TNFR2 mainly have 
stimulated effects on regulatory T cells (Treg) [267–269] 
and myeloid-derived suppressive cells (MDSC) [270–
272] for immune inhibition because of TNFR2’s preferred 
expressions on their surfaces [265]. During inflamma-
tion responses, the excessive expression of mTNF-α is 
supposed to bind to TNFR2 for activating Treg cell to 
control the amplification of TNF-α’s pro-inflammatory 
effects [267–269, 273, 274]]. However, in HLH, highly 
activated  CD8+ T lymphocytes disrupts IL-2 homeosta-
sis, resulting in a shift away from Treg cell maintenance 
and toward promotion of a feed-toward inflammation 
preference [275]. Thus, the dysfunctional Tregs cannot 
response to the strong mTNF-α-TNFR2 interaction to 
mitigate the inflammation progression in patients with 
HLH.

Despite the potent pro-inflammatory effects of TNF-α 
through the activation of innate and adaptive immu-
nity, it also exerts functional inhibitions on NK cell-like 
Treg cells [276, 277]. It is speculated that the mechanism 
involves TNF-α increasing the adhesion of NK cells to 
endothelial cells or exerting direct cytotoxicity on NK 
cells [277]. During the occurrence and progression of 
HLH, the activity of NK cells is suppressed, and impaired 
or deficient NK cell cytotoxic function can serve as one 
of the diagnostic criteria for HLH [278–281]. Therefore, 
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it is hypothesized that high levels of TNF-α may be one 
of the causes that contribute to the secondary functional 
defects of NK cells in HLH, leading to sustained activa-
tion of inflammatory signals and hindering the disease 
control.

In summary, as one of the inflammatory effector 
cytokines, TNF-α can firstly activate a series of immune 
cells and endothelial cells through binding to TNFR1, 
leading to the initiation of inflammatory signals and 
release of numerous inflammatory cytokines. Addi-
tionally, TNF-α also serves a function of inflammatory 
regulation via TNFR2, mainly by activating immunosup-
pressive cells expressing TNFR2, such as MDSCs and 
Tregs. In patients with HLH, the crucial regulatory func-
tion of Treg cells in controlling inflammation is impaired, 
thus unable to respond to TNF-α-TNFR2 interaction-
mediated inflammatory regulatory signals. This may be 
one of the mechanisms of amplifying the inflammatory 
cycle in HLH. Although TNF-α elevation may not be the 
core mechanism leading to HLH, targeting the TNF-α 
signaling pathway to alleviate the cytokine storm and 
reduce tissue damage is worth further researches. TNF-
α-blocking antibodies have been used to treat various 
rheumatic or autoimmune diseases [213–217], and block-
ing TNF-α seems to have a certain therapeutic effect in 
MAS [282–287]. However, conflicting results have been 
reported in multiple studies [96, 282–286, 288, 289], 
which may be associated with the discrepancy of TNF-α 
levels. For critically-ill patients with a sharp increase in 
TNF-α, the treatment with TNF-α-neutralizing antibod-
ies may be an option [283]. Furthermore, there were also 
reports suggesting that TNF-α therapy could indirectly 
induce HLH or worsen inflammation [290, 291]. There-
fore, the application value of targeting TNF-α-related 
signaling pathways remains to be further studied for 
treating HLH and requires careful consideration. The 
intervention timing and inflammation degree may be 
critical factors, especially for HLH patients secondary to 
autoimmune diseases.

Targeting IL‑1β
The IL-1 family includes several cytokines and receptors, 
and most of them share similar functions in inflamma-
tion and immune regulation as TLR families [292, 293]. 
IL-1α and IL-1β are two different molecular forms of the 
IL-1 ligands, both of which belong to immune-stimulated 
cytokines that mainly initiate innate immune-related 
inflammatory responses but also have effects on adap-
tive immune, especially T and B cell activation [293]. A 
large amount of IL-1 can be released when these cells 
are activated by foreign antigens or mitogens, which can 
be regarded as one of innate defense mechanisms [293, 
294]. IL-1α and IL-1β signals will exert similar biological 

functions upon binding to their receptors, IL-1RI and IL-
1RII [295, 296].

IL-1β is one of the key pro-inflammatory cytokines 
involved in the pathogenesis of HLH [209]. Under normal 
physiological conditions, IL-1β is intracellularly stored 
as the precursor form known as pro-IL-1β with low bio-
logical activity [297, 298]. Upon activation by PAMPs or 
DAMPs, transcription of pro-IL-1β is obviously upregu-
lated [299–304]. In addition, inflammatory cytokines 
such as IL-18, TNF-α, and IL-1β itself can also promote 
the production of pro-IL-1β [305–309]. IL-1β acts on the 
cell surface IL-1RI through autocrine, paracrine, or sys-
temic secretion, mediating inflammation by promoting 
the release of other pro-inflammatory cytokines such as 
IL-6 and TNF-α, which plays a critical role in bridging 
innate and adaptive immunity via interaction with Th1 
and Th17 cells [310–312]. Therefore, several levels can 
be regulated to control the inflammatory burst associ-
ated with pathologically-elevated IL-1β in the treatment 
of HLH.

IL-1β is highly associated with sJIA, which is one 
of the main causes of sHLH [313–316]. However, the 
exact role of IL-1β in the development of HLH remains 
unclear. HLH is characterized by elevated levels of vari-
ous cytokines, and its clinical manifestations differ from 
diseases primarily mediated by the increased IL-1β level, 
such as sJIA, cryopyrin-associated periodic fever syn-
drome, and familial Mediterranean fever [219, 317]. Gen-
erally, these diseases demonstrated great responses to 
IL-1 blockade therapy, with rapidly reduced IL-1β levels 
observed after administration [219, 317–319]. However, 
the efficacy of targeting IL-1β in the treatment of HLH 
remains uncertain.

The competitive inhibitor for IL-1 ligands, Anakinra, 
is a recombinant soluble receptor antagonist for both 
IL-1β and IL-1α and has been widely used in the treat-
ment of sJIA. However, previous studies showed its var-
ied efficacy in MAS, and there were reports of Anakinra 
that might induce the occurrence of MAS [196, 205, 
315, 320–326]. In a re-analysis of data from a phase III 
multicenter randomized clinical trial evaluating the use 
of anakinra in severe sepsis, it was found that anakinra 
reduced the mortality rate by 30% in patients with clini-
cal signs of HLH [327]. Treatments with anakinra sig-
nificantly alleviated patients’ symptoms and decreased 
hemophagocytosis scores in HLH patients secondary to 
severe COVID-19 pneumonia, suggesting its potentials 
in lowering death risk for cytokine storm-related dis-
eases [328]. Canakinumab is a high-affinity fully human 
monoclonal antibody against IL-1β that specifically neu-
tralizes IL-1β [329]. Although MAS has been considered 
an adverse event in clinical trials of canakinumab for the 
treatment of sJIA, the incidence rate of MAS in these 
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trials does not seem to be higher than those reported in 
real-world data for sJIA patients [330], suggesting that 
canakinumab does not affect the occurrence risk of MAS 
[331, 332]. The efficacy of targeting IL-1β in HLH may 
be dose-dependent. In most studies reporting success-
ful responses to anakinra in treating MAS, patients were 
administered at high doses up to 10  mg/kg [205], while 
lower doses around 1–2 mg/kg might be associated with 
higher risk of drug-induced MAS [325, 326], although 
clear conclusions still require further evaluation. The 
current dosages (< 4  mg/kg) used in canakinumab clini-
cal trials may not be sufficient to neutralize the increased 
IL-1β levels in MAS [205], thus further exploration of its 
higher dosages is needed to assess its inflammation con-
trol efficacy in MAS.

The aforementioned studies indicate that IL-1β plays a 
certain role in the occurrence and development of HLH, 
especially MAS. The therapeutic effect of blocking IL-1β 
may not only be attributed to the direct reductions in the 
production and release of IL-1β, but also to the control 
of the persistently-elevated pro-inflammatory cytokines. 
However, targeted blockade of IL-1β with canakinumab 
in sJIA patients were found ineffective both in reduc-
ing MAS risk and in treating MAS, also suggesting the 
limited role of IL-1β in the pathogenesis of MAS. Addi-
tionally, the non-selective IL-1α/β inhibitor, anakinra, 
appears to have better prospects in controlling inflam-
mation in patients suffering MAS. Moreover, the IL-1α/β 
competitive inhibitor, anakinra, has shown promising 
results as an adjuvant therapy in twelve pediatric MAS 
patients [324]. Therefore, further exploration of blocking 
IL-1α in HLH patients can be worth in the future. Over-
all, targeting a single blockade of IL-1 signaling may not 
be the key point for controlling HLH, as other cytokines 
induced by its resulted cascade responses are supposed 
to block at the same time.

Targeting IL‑18
IL-18 is a pro-inflammatory cytokine that belongs to the 
IL-1 family, normally existing as an inactive 24 kDa pre-
cursor form [333]. Activation of NF-κB following TLR 
stimulation induces the transcription of Pro-IL-18, which 
is further cleaved by caspase-1 into one mature and bio-
logically active 18 kDa molecule, then releasing into the 
extracellular environment [334, 335]. IL-18 is predomi-
nantly present in monocytes/macrophages, antigen-
presenting cells and epithelial cells in healthy humans 
and mice [336]. Similar to IL-1, IL-18 induces the pro-
duction of inflammatory mediators by activating the 
NF-κB signal [336]. After binding to IL-18 receptor alpha 
(IL-18Rα) and its following recruitment of IL-18 receptor 
beta (IL-18Rβ), mature IL-18 initiates TLR/ IL-1R-like 

pro-inflammatory signaling via the MyD-IRAK1/4-
NF-κB axis and p38 MAPK [336–339].

IL-18 is an important cytokine involved in immune 
mechanisms of activating macrophages and Th1 cells, 
which are critical to HLH pathogenesis [340]. A syner-
gistic action of IL-18 and IL-12 stimulates Th1-mediated 
immune reactions, inducing expressions of chemokines 
and cell adhesion molecules [341] and promoting the 
secretion of inflammatory cytokines such as IL-1, IFN-γ 
and TNF-α [338, 342–346]. Significantly elevated levels 
of IL-18 can be observed in both primary and second-
ary HLH patients [347–349]. Serum levels of IL-18 were 
positively correlated with disease activity in HLH [347, 
350–355]. Specifically, IL-18 was previously referred to 
as the IFN-γ-inducing factor [356], while IFN-γ rapidly 
drives the immune activation that promotes HLH occur-
rence [357]. Moreover, the sustained stimulation of mac-
rophages by IL-18 and their continued activation further 
promote the release of various inflammatory cytokines, 
such as IL-1, IL-6, IL-18, and TNF-α, leading to tissue 
impairment and hemophagocytosis by macrophages [96, 
195].

There are other diseases associated with HLH in which 
IL-18 levels are often significantly elevated, though with 
distinct underlying mechanisms, such as MAS, X-linked 
inhibitor of apoptosis protein (XIAP) deficiency and 
the NLRC4 mutation [205, 358, 359]. MAS is one of 
the most common secondary form of HLH and usually 
originates from rheumatic diseases or systemic auto-
inflammatory diseases (SAID) [360], including sJIA, 
AOSD, SLE, Kawasaki disease, systemic vasculitis, etc 
[219, 281, 334]. Actually, MAS can be a potentially life-
threatening complication of rheumatic diseases, char-
acterized by excessive activation and expansion of T 
lymphocytes/macrophages exhibiting hemophagocytic 
activity [281]. Compared to patients with EBV-HLH, 
patients with MAS exhibited more elevated levels of 
serum IL-18 [361], which might partly contribute to the 
occurrence of liver damage among them by inducing 
Fas ligands on NK cells [362]. Most patients with XIAP 
deficiency would experience recurrent HLH and exhibit 
a high level of serum IL-18 [353]. XIAP deficiency is a 
rare primary immunodeficiency caused by BIRC4 muta-
tions, also known as XLP-2 [359, 363]. Clinical features 
of XIAP deficiency include HLH and inflammatory 
bowel diseases due to defective nucleotide binding oli-
gomerization domain containing 2 (NOD2) responses 
[79, 359], but the specific mechanism by which mutated 
XIAP leads to the presentation of HLH remains incom-
pletely understood. Elevated levels of IL-18 may offer 
crucial insights into the pathogenesis of this disease. On 
the other hand, the NLRC4 inflammatory is part of the 
human innate immune system, and its activation can lead 
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to the cleavage of the pro-inflammatory cytokines IL-1β 
and IL-18, which also promotes inflammation [364]. 
The gain-of-function mutations in NLRC4 lead to HLH 
and gastrointestinal pathology [26, 43, 365], resulting in 
spontaneous activation of NLRC4 inflammasomes that 
increased IL-18 levels [360, 366]. It was reported that 
one patient with refractory NLRC4-MAS exhibited a sig-
nificant response after IL-18 blockade treatment (IL-18 
binding protein, IL-18BP) [367].

IL-18BP is a constitutive protein that can bind to IL-18 
with high affinity, forming a complex that prevents IL-18 
from interacting with its cell surface receptors [339]. 
Therefore, IL-18BP acts as a natural inhibitor of IL-18, 
controlling excessive IL-18-mediated inflammatory 
responses [368–370]. Imbalance between IL-18 and IL-
18BP may lead to the activation of T lymphocytes and 
macrophages in HLH [347]. IL-18BP can be induced by 
IFN-γ, considering that IL-18 signaling has a negative 
feedback loop [336, 350, 371]. In a pHLH mouse model, 
the IL-18BP treatment reduced hemophagocytic activity 
and reversed liver and spleen damage [218]. Meanwhile, 
it also decreased the production of IFN-γ and TNF-α 
by  CD8+ T cells and NK cells, as well as the expression 
of Fas ligand on the surface of NK cells. However, this 
therapeutic did not improve the survival outcome [218]. 
Some clinical studies reported that recombinant human 
IL-18BP successfully treated patients with severe inflam-
matory responses carrying the NLRC4 mutation [367]. 
Currently, some clinical trials (NCT03512314) are under-
way for IL-18BP (tadekinig alfa) in patients with NLRC4 
or XIAP mutations. Overall, IL18-BP holds great poten-
tials of modulating the inflammatory response triggered 
by IL-18, thereby exerting a positive impact on HLH. 
However, further clinical research and assessment are 
required to determine the efficacy and safety of IL18-BP 
as a treatment for HLH.

Targeting CD52
CD52 is a glycoprotein consisting of 12 amino acids 
anchored to glycosylphosphatidylinositol (GPI) [372, 
373]. It is a widely distributed antigen found on lympho-
cytes, monocytes, eosinophils and dendritic cells differ-
entiated from monocytes in the hematopoietic system, 
with a high density on lymphocytes [374]. Some stud-
ies have suggested that CD52 is an important immu-
nomodulatory factor in T cell activation [375]. However, 
the specific pathways and mechanisms require further 
elucidation.

Alemtuzumab, also known as Campath-1H (trade 
name in Europe: MabCampath), is a humanized mono-
clonal antibody targeting the cell surface CD52 antigen 
[374]. It has been approved for chronic lymphocytic 
leukemia, multiple sclerosis (MS), and is also utilized in 

some autoimmune diseases such as rheumatoid arthritis, 
solid organ transplantation and GVHD following bone 
marrow transplantation [376–382]. Alemtuzumab elimi-
nates T and B lymphocytes through mechanisms such as 
inducing cell apoptosis, antibody-dependent cell-medi-
ated cytotoxicity (ADCC) and complement-dependent 
cytotoxicity (CDC) [383–385]. One study reported the 
usage of T-cell depletion agents like alemtuzumab as sal-
vage therapy for refractory HLH [386]. The high levels of 
CD52 expression on T cells and tissue cells make alem-
tuzumab a rational alternative for disrupting the uncon-
trolled immune responses like HLH.

One study reported that among 22 patients with refrac-
tory HLH treated with alemtuzumab, 14 of them expe-
rienced an overall partial response with 77% of them 
surviving to undergo allo-HSCT [386]. In a case of 
recurrent atypical HLH refractory to multiple immu-
nosuppressive agents, alemtuzumab induction resulted 
in remission, enabling successful allo-HSCT [387]. As 
for HLH/MAS, in a case of SLE-induced HLH, despite 
refusal of high-intensity immunosuppressive therapy, 
the patient’s condition gradually improved after alemtu-
zumab treatment [388]. Additionally, RIC regimens typi-
cally including alemtuzumab improved survival outcome 
in HLH patients after allo-HSCT [66]. However, caution 
is warranted regarding viral reactivation when using 
alemtuzumab.

For patients with refractory HLH, alemtuzumab may 
be an effective salvage therapy. However, some previous 
studies have also indicated that alemtuzumab induced 
HLH in patients with hematologic malignancies [389]. 
Therefore, the use of alemtuzumab in HLH should be 
approached with extreme caution.

Targeting CD20
CD20 remains to be one of most important surface mark-
ers expressed on B lymphocytes since the late pre-B cell 
stage, and is lost in terminally differentiated plasma cells 
and plasmablasts [390]. CD20 is a 33–37 kDa non-glyco-
sylated protein classified into the membrane-spanning 
4-domains subfamily A (MS4A), encoded by MS4A1 
[391, 392]. The biological function and physiological 
ligands of CD20 on B cells are still not fully understood. 
Some studies suggested that CD20 deficiency lead to the 
decreased circulating memory B cells, less immunoglob-
ulin isotype switching and lower IgG levels [393]. CD20 is 
associated with several protein tyrosine kinases, includ-
ing Lyn, Fyn, Lck, and p75/85 kinases, which can cause 
activation of phospholipase-C-gamma (PLC-γ) and the 
subsequent MAPK (JNK, ERK, and p38MAPK) signaling 
pathways [394]. PLC-γ can also hydrolyze PIP3, generat-
ing inositol trisphosphate and diacylglycerol, which are 
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signaling molecules involved in pathways highly similar 
to B cell receptor (BCR) signaling [395].

Patients with perforin-dependent cytotoxicity defects 
or genetic predisposition are susceptible to EBV-HLH 
[396, 397]. Some studies suggested that EBV encod-
ing protein mimicked key signaling pathways within 
B cells [398–401]. For instance, LMP1 could simulate 
active CD40 receptor, and latent membrane protein 
2A (LMP2A) could simulate or replace BCR signaling 
[398–401]. Furthermore, CD20 indirectly regulated cal-
cium release dependent on the BCR pathway, and  CD20+ 
B cells that lack BCR were unable to initiate calcium-
releasing signals [402]. Some studies also demonstrated 
that CD20 directly functioned as an ion channel, and 
overexpression and knockout of CD20 might increase or 
decrease calcium current in B cells, respectively [403].

EBV, also known as human herpesvirus 4, is a dou-
ble-stranded DNA virus [404], mainly targeting B lym-
phocytes both in  vitro and in  vivo, which serves as the 
location site for virus preservation in healthy carriers 
[405]. Preferentially, EBV infects B lymphocytes by two 
strategies: (1) binding to the B-cell surface CD21 through 
viral envelope glycoprotein gp350; (2) binding to human 
leukocyte antigen through glycoprotein gp42 [406–408]. 
EBV infection drives the transformation of B lympho-
cytes [409]. Within these host B cells, EBV may primarily 
exist as the free form and replicate via host DNA poly-
merase, but its nucleotide sequences can be integrated 
into the host genome by the non-random pattern [410]. 
Within healthy individuals, transformed B lymphocytes 
will be rapidly eliminated by NK and cytotoxic  CD8+T 
cells, while target cell killing deficiencies in patients with 
familial or sHLH may trigger the dysregulation of sys-
tematic inflammatory responses that contribute to HLH 
occurrence [279, 411, 412].

Anti-CD20 monoclonal antibodies (mAbs) are targeted 
drugs against B cells by blocking CD20 molecules [413]. 
Based on different characteristics, anti-CD20 antibodies 
can be classified into type I (such as rituximab) and type 
II (such as obinutuzumab), depending on their ability to 
induce redistribution of CD20 into lipid rafts on the cell 
membrane [414]. Type I CD20 mAbs induce the recom-
bination of CD20 molecules into lipid rafts and then 
effectively activate the classical pathway of complement 
system. Type II CD20 mAbs exhibit poorer abilities in 
complement activation, but perform better to induce cell 
death after directly binding to CD20 without cross-link-
ing through secondary antibodies [393, 414–416]. Anti-
CD20 mAbs exert their effects through CDC, ADCC and 
direct cytotoxicity, leading to the destruction of targeted 
B cells [417, 418]. Moreover, it can also interfere with 
BCR signaling and downregulate BCR expression [419–
421]. Rituximab is a chimeric mouse/human mAb that 

can deplete  CD20+ cells within 48 h after administration, 
decreasing the incidence rate of EBV reactivation [422]. 
Rituximab is effective in treating various EBV-mediated 
diseases, such as EBV-induced post-transplant lym-
phoproliferative disorder (EBV-PTLD) [423–425]. EBV 
usually demonstrates a poor response to anti-viral drugs, 
and thus its presence within B lymphocytes allows for 
rapid depletion through the use of targeted mAbs [426, 
427].

Rituximab-based chemotherapeutic regimens have 
been used for EBV-HLH. Chellapandian et al. retrospec-
tively reported a clinical cohort involving 42 patients 
with EBV-HLH who received a regimen including rituxi-
mab with great tolerability, which effectively improved 
the physical status for 43% of patients with significant 
decreases in EBV load and serum ferritin levels [428]. 
There were also one report of two cases of central nerv-
ous system involvement in patients with EBV-HLH on 
which alleviated symptoms were rapidly observed with 
the use of rituximab as a monotherapy [429, 430]. Mono-
cytes/macrophages play a crucial role in the depletion 
of B cells, and the activation of macrophages is com-
monly observed in HLH patients, which may facilitate 
the ADCC effects of anti-CD20 mAbs [431]. However, in 
some cases, EBV can also infect other kinds of cells, such 
as T cells and NK cells [432], which may not be elimi-
nated by giving Rituximab [433, 434]. In a study analyz-
ing EBV-DNA level in lymphocyte subpopulations of 15 
HLH patients, it was found that EBV primarily infected T 
and NK cells in 5 patients, and only infected B cells in the 
remaining 10 patients [333]. After receiving a regimen 
including rituximab, the patients who had infected T and 
NK cells had no obvious changes in EBV viral load, while 
the other 10 patients showed the significantly decreased 
EBV levels [333]. In HLH cases whose B cell-depletion 
have been confirmed, the persistently high EBV-DNA 
level suggested the EBV infection into T/NK cells [333, 
396]. Therefore, combining with etoposide and dexa-
methasone may help to eliminate infected T and NK cells 
for promotion of virus clearance [1, 398, 435].

The primary therapeutic principles for EBV-HLH 
include suppressing excessive inflammation, eliminating 
EBV and reversing impaired immune system function 
[333, 436]. Dampening EBV activation and cutting its 
virus burden were proved to have potentials of control-
ling clinical symptoms and improving survival outcome 
[333, 436]. During the active phase, the use of rituximab 
was able to limit immune responses by getting rid of EBV-
infected B cells [428, 437]. However, patients previously 
treated with rituximab (often in combination with other 
medications) usually hace varying administration sched-
ules and dosages, potentially leading to reporting biases 
and confounding factors. Overall, treatment regimens 
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including rituximab have demonstrated a promising out-
look in reducing EBV load and alleviating hyperinflam-
mation, which, nevertheless, should be further validated. 
In patients with EBV-HLH, monitoring of the response 
to rituximab can be performed using EBV blood poly-
merase chain reaction assays, which at the same time 
help reflect the increases in viral load and recovery of B 
cells after rituximab therapy [396, 428]. However, B cell-
targeted therapies lead to a strong immune suppression, 
thus necessitating precautions such as effective isolation 
and antifungal prophylaxis. Besides, it is necessary to 
regularly monitor potential pathogens (CMV, adenovirus 
or aspergillus) to prevent infection or reactivation.

Anti-CD20 mAbs are expected to be primarily utilized 
for EBV-HLH. Since EBV tends to infect B cells, target-
ing EBV-infected B cells using anti-CD20 mAbs may 
effectively dampen the amplified inflammatory response, 
but infection monitoring is necessary due to the substan-
tial impact of B cell clearance on the immune function 
of the body. Currently, the clinical evidence for the use 
of anti-CD20 mAbs in HLH is limited to case reports or 
small-sample retrospective studies. The definitive role of 
CD20 in HLH remains unclear, and further explorations 
through standardized clinical trials are required.

Targeting PD‑1
PD-1, also known as CD279, is a prototypical immune 
inhibitory checkpoint predominantly found on the sur-
face of T cells [438]. It regulates T cell effector function 
during various physiological responses, including acute 
and chronic infections, cancer, autoimmune diseases and 
immune homeostasis [439]. The cytoplasmic tail of PD-1 
contains two tyrosine-based motifs: an Immunoreceptor 
Tyrosine-based Inhibitory Motif (ITIM) and an Immuno-
receptor Tyrosine-based Switch Motif (ITSM) [440, 441]. 
The PD-1 has two ligands, PD-L1 (CD274) and PD-L2 
(CD273) [442]. PD-L1 is broadly expressed across various 
cell types, found in hematopoietic cells (including T cells, 
B cells, dendritic cells (DCs), and macrophages) as well 
as non-hematopoietic cells (including vascular and stro-
mal endothelial cells) [439]. In contrast, PD-L2 expres-
sion is more restricted, primarily expressed by DCs, 
macrophages, and subsets of B cells [439]. Upon binding 
with its ligands, PD-1 is phosphorylated at these tyrosine 
residues, leading to the recruitment of protein tyrosine 
phosphatases (PTPs) such as SHP2 [443]. These PTPs can 
dephosphorylate kinases and counteract the positive sig-
nals generated through T cell receptor (TCR) and CD28, 
affecting downstream signaling pathways including those 
involving PI3K-AKT, RAS-ERK, and PLC-γ [439, 444]. 
The aforementioned interaction between PD-1 and its 
ligands can suppress T cell proliferation, activation, 
cytokine production and cytotoxic T lymphocyte killing 

function, thereby protecting the organism from auto-
immune attacks [445]. Many malignant tumors express 
PD-L1, and thus high PD-L1 expression is associated 
with poor prognosis in diseases such as malignant mela-
noma, colon cancer, pancreatic cancer, hepatocellular 
carcinoma, and ovarian cancer [446]. Therefore, PD-1 
inhibitors have been approved for the treatment of vari-
ous malignant tumors. PD-1 blockade can significantly 
prolong the survival of patients with such diseases and 
provide long-term sustained remission. Additionally, 
some studies have suggested that inhibitors targeting the 
PD-1 pathway can rescue T cells from exhaustion, reac-
tivate dysfunctional  CD8+ T cell populations and restore 
immune responses [447].

During certain chronic infections, persistent antigen 
exposure results in sustained PD-1 expression, which 
limits the clearance of immune-mediated pathogens 
or tumor cells [439]. It was reported that PD-1 inhibi-
tors had been successfully used to treat the chronic viral 
infection [448]. In all kinds of HLH cases, infections are a 
common trigger. Several reports have demonstrated suc-
cessful treatment of EBV-HLH and chronic active EBV 
infection (CAEBV) through PD-1 blockade [449–454]. 
A study involving seven r/r EBV-HLH patients treated 
with nivolumab as a monotherapy showed responses in 
six patients (85.7%), with five patients (71.4%) achieving 
clinical CR and a gradual reduction in plasma EBV-DNA 
copy numbers [452]. Single-cell sequencing revealed 
positive enrichment of multiple T cell activation path-
ways and degranulation pathways in  CD8+ T cells after 
nivolumab treatment, suggesting that nivolumab may 
restore the cytotoxicity function of  CD8+ T cells [452].

One study involved 12 EBV-HLH patients in the inten-
sive care unit with sintilimab and ruxolitinib therapy, 
with six patients (50%) achieving CR within 1 month 
[455]. With a median follow-up time of 5 (4.4 to 14.7) 
months, six of them died, resulting in a mortality rate of 
50% [455]. For EBV-HLH patients with post-transplant 
relapse, PD-1 blockade also showed promising effects. 
An EBV-HLH patient who relapsed after chemotherapy 
and allo-HSCT might benefit from the addition of sintili-
mab as salavage therapy, with normalization of fever, cell 
count, liver enzyme elevation, serum ferritin and sCD25 
levels and negative EBV-DNA loads [456]. Therefore, 
PD-1 blockade therapy may be an option for r/r and criti-
cally ill EBV-HLH patients, though further validation is 
required.

However, stimulating the immune system is a dou-
ble-edged sword, as sustained immune activation may 
also trigger HLH or exacerbate HLH symptoms [457]. 
Some reports have indicated cases of immune check-
point inhibitor-related HLH in patients with various 
solid tumors [458–461]. There have even been studies 
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reporting HLH induction in two CAEBV patients follow-
ing the treatment with sintilimab [462]. Additionally, one 
case report described the worsening of symptoms and 
CRS-related pulmonary injury in a 3-year-old girl with 
r/r EBV-HLH when treated with nivolumab during the 
acute phase of HLH disease [463]. Therefore, considering 
safety concerns, cautions should be exercised when using 
the PD-1 blockade strategy in HLH during the peak of 
inflammation.

Conclusions
In summary, HLH is a life-threatening hyperinflamma-
tory syndrome characterized by excessive immune acti-
vation. HLH can be hereditary or sporadic, triggered by 
various events that disrupt immune homeostasis. HLH 
is typically treated with immunosuppressive therapy to 
induce remission. For patients with pHLH, allo-HSCT 
is considered once the high-inflammatory state is con-
trolled. For patients with r/r HLH, cytokine-targeted 
therapy and immunotherapy can be a treatment option, 
including the addition of the L-DEP regimen, JAK1/2 
inhibitors, anti-CD52 antibodies, anti-CD20 antibod-
ies, and PD-1 blocking agents. The IL-6 antagonists, IL-1 
receptor antagonists, TNF-α blocking antibodies and 
L-18BP may be considered for MAS patients. Besides, 
anti-the IFN-γ antibody, emapalumab, has been proved 
to have efficacy for pHLH. All the above-mentioned tar-
geted therapeutics can be combined with the conven-
tional treatments, which is worth looking forward to in 
the future studies. Specifically, HLH patients planned 
for allo-HSCT may consider receiving a RIC regimen 
with anti-CD52 antibodies that should be personalized 
based on the doctor’s expertise and the patient’s condi-
tion. Overall, further clinical cohort studies are required 
to explore the efficacy of single-agent and combination 
therapies with different targeted drugs in HLH.
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PD-1  Programmed cell death protein 1
IFNGR  IFN-γ receptor
GAS  Gamma-activated sequence
LCMV  Lymphocytic choriomeningitis virus
CNS  Central nervous system
TYK2  Tyrosine kinase 2
GM-CSF  Granulocyte-macrophage colony-stimulating factor
FDA  Food and Drug Administration
CR  Complete response
PR  Partial response
PAMPs  Pathogen-associated molecular patterns
DAMPs  Damage associated molecular patterns
PDGF  Platelet-derived growth factor
LPS  Lipopolysaccharide
PMA  Phorbol myristate acetate
mIL-6R  Membrane-bound IL-6R
sIL6R  Soluble IL-6R
TLR  Toll-like receptor
CAR-T  Chimeric antigen receptor T cell
CRS  Cytokine release syndrome
TACE  TNF-α-converting Enzyme
TNFR1  TNF receptor
TNFR2  TNF receptor 2
TNFRSF1A  Tumor necrosis factor receptor superfamily member 1A
TRADD  Adaptor protein TNFR1-associated death domain
FADD  Fas-associated death domain
TRAF1  TNF receptor-associated factor 1
Treg  Regulatory T cell
MDSC  Myeloid-derived suppressive cell
IL-18Rβ  IL-18 receptor beta
SAID  Systemic autoinflammatory diseases
IL-18BP  IL-18 binding protein
GPI  Glycosylphosphatidylinositol
MS  Multiple sclerosis
ADCC  Antibody-dependent cellmediated cytotoxicity
CDC  Complement-dependent cytotoxicity
PLC-γ  Phospholipase-C-gamma
BCR  B cell Receptor
LMP2A  Latent membrane protein 2A
mAbs  Monoclonal antibodies
EBV-PTLD  EBV-induced post-transplant lymphoproliferative
ITIM  Immunoreceptor Tyrosine-based Inhibitory Motif
ITSM  Immunoreceptor Tyrosine-based Switch Motif
DCs  Dendritic cells
PTPs  Protein tyrosine phosphatases
CAEBV  Chronic active EBV infection
PBMCs  Peripheral blood mononuclear cells
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