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Abstract 

Hematologic malignancies (HMs) pose a serious threat to patients’ health and life, and the five-year overall survival of 
HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense 
challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, 
chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell 
therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug 
resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great 
promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune 
response to promote durable immunological memory. In this review, we summarized the strategies of recently devel-
oped nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for 
the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.

Keywords  Hematological malignancies, Nanomedicine, Targeted drug delivery, Immunotherapy, Hematopoietic 
stem cell transplantation

Background
Hematopoietic malignancies (HMs) are originated from 
hematopoietic system, mainly including leukemia, lym-
phoma, multiple myeloma (MM) and myelodysplastic 
syndromes (MDS) (Fig. 1), which increase mortality and 
morbidity and seriously threaten human health [1, 2]. 
However, due to the lack of understanding of the patho-
genesis and the lack of effective drugs, the 5-year over-
all survival rate of HMs is extremely low, causing serious 
economic and life burdens to patients [3, 4]. In terms of 
pathogenesis, leukemia and MDS are mainly caused by 
the malignant clonal proliferation of hematopoietic stem/
progenitor cells (HSPCs) in the bone marrow [5–10]. 
MM also originates from bone marrow, but from malig-
nant proliferation of plasma cells [11]. The pathogenesis 
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of lymphoma has not been fully elucidated and virus and 
abnormal cell metabolism are important trigger factors 
[12].

Current clinical strategies for treating HMs include 
radiotherapy, chemotherapy, targeted therapy and 
hematopoietic stem cell transplantation (HSCT) [13, 
14]. Chemotherapy is the most basic therapy for treat-
ing HMs, and the classic first-line therapy of “3 + 7” regi-
ment (daunorubicin and cytarabine) against leukemia has 
been in clinical practice for decades since 1973 [15]. The 
combination of chemotherapy and targeted drugs plays 
an increasingly important role in the treatment of HMs. 
The combination regimen of rituximab, cyclophospha-
mide, doxorubicin, hydrochloride, vincristine sulfate and 
prednisone (R-CHOP) has become the current standard 
treatment regimen for treating B cell lymphoma [16]. 
Recently, the DAV regimen (doxorubicin, cytarabine 
combined with venetoclax) has shown good promise in 
clinical trials [17]. HSCT is the most promising therapy 
to completely cure HMs, but the scarcity of donor cells 
always restricts the effectiveness of transplantation [18]. 
As for immunotherapy, researchers obtained positive 
results utilizing a combination of nivolumab (PD-1 inhib-
itors) and AZA treatment to treat patients with refrac-
tory AML whose expression levels of PD-1 and PD-L1 
increased constantly [19]. Other clinical studies have 
demonstrated that nivolumab combined with ibrutinib 
(BTK inhibitors) can effectively treat refractory CLL [20]. 
Most clinical trials are still in the initial stage. Chimeric 
antigen receptor-modified T cell (CAR-T) therapy has 
achieved remarkable progress in treating B cell-derived 

malignancies, the severe side effects and high expense 
limit its clinical application [21]. Therefore, HMs require 
more effective and de novo therapeutic approaches.

Nanomedicine based on nanomaterials and nanotech-
nology show great advantages in cancer treatment and 
diagnosis [22, 23]. Nanotechnology can be used to rap-
idly identify cancer cells from complex or rare samples, 
which improve the precision and accuracy of diagno-
sis [24]. In cancer treatment, unlike traditional drugs, 
nanodrug delivery systems can enable targeted delivery 
of drugs, increase drug accumulation at the tumor site, 
achieve controlled drug release and reduce systemic tox-
icity [25]. Moreover, nanomedicine shows advantages in 
overcoming drug resistance and enhancing the immune 
response [26]. Recurrence is the most intractable prob-
lem in hematological malignancies. Therefore, the usage 
of nanomedicine to enhance the body’s immune response 
and immunological memory is an effective strategy for 
the long-term control of HMs. Clinically, the applica-
tion of HSCT after chemotherapy is a common strat-
egy for treating HMs. However, the lack of donor HSC 
cells is an important factor limiting the success rate of 
HSCT [27]. Nanoscaffold structures or modified hydro-
gels show great promise in the expansion of stem cells 
[28–30]. Ex vivo expansion systems based on nanomate-
rials or hydrogels can be used to increase the number of 
HSCs without impairing the hematopoietic capacity, thus 
improving the effectiveness of HSCT [18]. In this review, 
we first introduce the main subtypes and pathogenesis 
of HMs and current therapies used to treat these dis-
eases. Then, we systematically propose the strategies for 

Fig. 1  The main subtypes of hematological malignancies
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Table 1  Strategies for designing and constructing nanomedicine against HMs

HSCs hematopoietic stem cells, TME tumor microenvironment, PLA NPs poly (lactic acid) nanoparticles, PGA poly (glutamic acid)

Clinical needs Strategies Nanomaterials or carriers

Optimize the HSCT I. Expansion of HSCs ex vivo Nanoparticles, nanofibers, hydrogels

II. Promote immune reconstitution Bionic hydrogels

Boost immunotherapy I. Improve antigen presentation PLA NPs, hydrogels

II. Improved CAR-T therapy PGA polymer

Targeted drug delivery I. Targeting TME Bionic vesicles, living or dead cells

II. Targeting cancer cells Organic or inorganic nanoparticles

III. Targeting intracellular signals Organic or inorganic nanoparticles

IV. Reverse multidrug resistance Organic or inorganic nanoparticles

Fig. 2  The main content of this review and proposed strategies
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treating HMs (Table 1; Fig. 2) and provide prospects for 
the future design of HMs nanomedicines.

Nanomaterials applied in construction 
of nanomedicine against HMs
Nanomedicine and nanomaterials in anticancer therapy
Nanomedicine refers to use of nanotechnology to make 
drugs into nanoparticles with particle size between 1 
and 100  nm, or the combination of appropriate carrier 
materials with bulk drugs to form nanoparticles with 
nanometer scale and the final pharmaceutical prepara-
tion [31]. Compared with traditional free small molecule 
drugs, nanomedicine has longer blood circulation time, 
stronger targeting and more effective therapeutic effect 
[22]. Nanomaterials, with a particle size about 1–100 nm, 
have special properties different from macroscopic mate-
rials and are widely used in medicine and pharmaceutical 
fields. Nanomaterials are mainly divided into organic and 
inorganic nanomaterials [25]. Currently, FDA-approved 
or clinically studied nanomedicine against HMs is mainly 
based on organic nanomaterials, such as liposomes and 
polymer micelles (Table  2). Inorganic nanomaterials 
are usually studied more widely in the diagnosis of can-
cer [32]. In this chapter, we will introduce these various 
nanomaterials used in HMs in detail.

Liposome
Liposome is the most widely used drug delivery system in 
biomedical research and clinical application [33–35].

Liposomes are widely used and studied in the treat-
ment of blood cancer [36, 37]. CPX-351 and Marqibo 

(R) are the well-known liposome drug for the treatment 
of leukemia [38–40]. Cytarabine and doxorubicin are 
the main components of CPX-351 [41]; compared with 
traditional free drugs, CPX-351 has better pharmacoki-
netic characteristics and brings more significant clini-
cal benefits to patients [40, 42]. Liposomes loaded only 
with cytarabine also showed good results in the treat-
ment of leukemia [43]. Doxorubicin is another impor-
tant chemotherapy drug for leukemia, and its liposome 
drugs have been widely studied and reported [44]. Dox-
orubicin liposomes can significantly improve the clini-
cal therapeutic effect of leukemia patients [45, 46]. In 
addition to traditional chemotherapy drugs, liposomes 
are also used to coat other drugs, such as glucocorti-
coids [47, 48], AP9-cd [49], ceramides [50, 51], vin-
cristine [52], annamycin [53] and other novel drugs. 
Nucleic acid drugs show great promise in the treatment 
of leukemia [54, 55], and liposomes are also used to 
deliver nucleic acid drugs to treat CML leukemia [56].

Surface-modified liposomes are also widely studied. 
Antibody-modified liposomes can be used to specifi-
cally target leukemia cells [57]. Myers et  al. reported 
a liposome modified with CD19 antibodies for the 
treatment of B cell leukemia [58]. Shao et  al. reported 
a hyaluronic acid-modified liposome for the treatment 
of leukemia [59]. Combined with the latest nanotech-
nology, the controlled release ability of liposomes is 
further improved. Gui and colleagues developed a tem-
perature and light-controlled liposomes drug for con-
trolled release of chemotherapeutic drugs [60].

Table 2  Representative FDA-approved drugs or clinical trials of nanomedicine against HMs

From www.​clini​caltr​ials.​gov

MTX mitoxantrone, HCL hydrochloride

Product name Carrier Drug Status Outcome or State Identifier

Leukemia

Marqibo kit Liposome Vincristine Approved

Vyxeos Liposome Ara-C, DOX Approved

Oncaspar PEG Pegaspargase Approved

MB-106 Liposome Annamycin Phase 1 80% Overall Response Rate in Final Cohort of Phase 1 NCT05319587

Lymphoma

2022–0453 Liposome MTX Phase 2 P2, Second Affiliated Hospital, School of Medicine, Zheji-
ang University N = 45, Recruiting

NCT05495100

MM

MCC-17814 Liposome DOX Completed P2, H. Lee Moffitt Cancer Center and Research Institute NCT02186834

Liposome MTX Phase 1 P1, CSPC Zhongnuo Pharmaceutical (Shijiazhuang) Co., 
Ltd. N = 60, Recruiting

NCT05052970

MDS

TLK199 HCl Liposome Ezatiostat, HCL Phase 2 P2, Telik, N = 65, Completed NCT00035867

NCI-2018–01812 Liposome Ara-C, DOX Phase 2 P2, M.D. Anderson Cancer Center N = 50, Recruiting NCT03672539

AEB1102 PEG Human arginase I Phase 2 P2, Aeglea Biotherapeutics, N = 29, Completed NCT02732184

http://www.clinicaltrials.gov
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Shi et  al. constructed a liposome with dual targeting 
capability to remove leukemia stem cells and minimal 
drug residues [61].

Polymer
Polymer-based nanoparticles are widely used in prepara-
tion of nanomedicine [62]. Polymer nanomaterials used 
in HMs mainly include PLA, PLGA and chitosan [63].

Poly(lactic-co-glycolic acid) (PLGA)-based nanomate-
rials are widely used in drug carriers. Noureldien et  al. 
reported a PLGA-based nanodrug for the targeted treat-
ment of AML [64]. Khan et al. constructed a PLGA nan-
odrug loaded with bendamustine, which can significantly 
enhance the toxicity to leukemia cells [65]. In addition, 
polymer nanoparticles can also be used to reverse drug 
resistance [66]. Leung et  al. also constructed curcumin-
loaded PLGA-based nanoparticles (Cur-PLGA NP) for 
the treatment of Jurkat leukemia cells [67]. Su et al. con-
structed a erythrocyte membrane cloaked, ATO-loaded 
PLGA nanoparticle for APL treatment and to reduce the 
side effects of arsenic agents [68]. Venkatpurwar et  al. 
demonstrated the biosafety of PLGA as a delivery carrier 
[69]. Wang et al. demonstrated that PLGA nanoparticles 
encapsulated with Iguratimod could induce MM cell 
death, which could be used as a potential therapy for MM 
[70].

Chitosan nanoparticles are widely applied in drug 
delivery carriers. Gong et  al. reported a chitosan-based, 
self-assembled nanomedicine for the controlled release 
of 6-MP and treatment of AML [71]. Derakhshandeh 
demonstrated that Gemcitabine in the form of chi-
tosan nanoparticles can increase intestinal transport by 
three–fivefold [72]. Similarly, Alassaif ’s work showed 
that chitosan-coated anthraquinone nanoparticles can 
significantly enhance the toxicity against leukemia cell 
HL-60 [73]. Sarangapani’s work demonstrated that chi-
tosan nanoparticles can selectively kill leukemia cells by 
clearing glutathione and elevating ROS [74]. Similarly, 
Saravanakumar et  al. showed that the preparation of 
zinc–chitosan nanoparticles (Zn-CSNPs) by linking zinc 
with chitosan could also enhance the toxicity against 
leukemia cells [75]. Termsarasab et  al. constructed a 
PEGylated, chitosan-based nanodelivery system for pro-
longing the blood circulation time of DOX [76].

Other biomacromolecules as delivery carriers
Gigli’s study showed that simultaneous delivery of 
two polymer nanoparticles containing different drugs 
consistently down-regulates CML cancer develop-
ment [77]. Boto et  al. have constructed a light-induced 
polymer nanoparticle to enhance leukemia treatment 
[78]. To overcome the delivery barrier of therapeutic 
enzymes, Blackman et  al. have built a polymer-based 

self-assembly-based nanodrug to deliver leukemia treat-
ment drugs [79]. Ma and colleagues used protein-based 
scaffold as nanocarriers to deliver antitumor peptides for 
CML therapy [80]. Li et al. reported a carrier-free catan-
ionic drug-derivative nanodrug for the treatment of leu-
kemia [81].

Carbon‑based nanomaterials
Carbon‑based nanomaterials as delivery carrier
Carbon-based nanomaterials are widely studied as drug 
delivery carriers in anticancer research [82–84]. Carbon-
based nanomaterials such as fullerenes, carbon nano-
tubes, graphene and carbon nanodiamond all have widely 
application prospects in the treatment of tumors or drug 
delivery [85, 86].

One-dimensional carbon nanotubes are widely used 
as drug delivery vehicles. Ruibin et  al. reported a P-gp 
antibody (anti-P-gp) functionalized water-soluble sin-
gle-walled carbon nanotubes (Ap-SWNTs) loaded with 
doxorubicin (Dox) to kill MDR human leukemia cells 
K562 [87]. Carlos H. Villa et al. reported the use of sin-
gle-walled carbon nanotubes (SWNT) as antigen carriers 
to improve the immune response to weak immunogenic 
peptides [88]. In  vitro, peptide-SWNT constructs were 
rapidly internalized into APCs cells (dendritic cells and 
macrophages) in a dose-dependent manner.

Two-dimensional carbon nanomaterials such as gra-
phene nanosheets also have been applied in targeted 
delivery of anticancer drugs [89]. Roy et  al. reported a 
RGO/Ag composite nanoparticle that has a strong anti-
cancer activity against KG-1A cell line [90]. The increase 
in ROS induced apoptosis in KG-1A cells exposed to 
nanocomposites may be the cause of cell death. Three-
dimensional carbon nanomaterials, nanodiamonds 
(NDs), also be used as drug delivery platform for cancer 
treatment. Man et al. synthesized ND vectors capable of 
loading chemotherapeutics and gene delivery and applied 
them to the treatment of drug-resistant leukemia [91].

Carbon nanomaterials with intrinsic anticancer properties
Inorganic nanoparticles are also widely used in the 
treatment of leukemia [92]. In consideration of carbon 
nanomaterials that can regulate cell adhesion and guide 
cell fate, Wang et al. screened a variety of one- and two-
dimensional carbon materials and unexpectedly found 
that GDYO showed a strong killing effect on DNMT3A-
mutant AML cells [93]. By analyzing the GDYO-bind-
ing proteome, they found that GDYO specifically binds 
to two membrane proteins, ITGB2 and MRC2, which 
are highly expressed in DNMT3A-mutant AML cells, 
thereby increasing the intake of GDYO in DNMT3A-
mutant AML cells. After entering the cell, GDYO inter-
feres with the normal assembly of F-actin cytoskeleton 
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through direct interaction with actin and ultimately leads 
to cell death. Finally, they verified the in vitro efficacy of 
GDYO in DNMT3A mutated AML and the biosafety of 
GDYO.

GDYO also inhibits the growth of lymphoma. Lym-
phoma is a type of solid tumor originating in the lym-
phatic system. Li et al. reported that GDYO nanosheets 
can simultaneously kill lymphoma cancer stem cells and 
remodel tumor microenvironment, thus inhibiting the 
growth of lymphoma [94]. Mechanistically, GDYO treat-
ment significantly reduced the number of cancer stem 
cells and the level of Mif-Ackr3 signaling from tumor 
cells to cancer-associated fibroblasts (CAFs), resulting in 
a decrease in inflammatory cytokines secreted by CAFs 
in the microenvironment, which further led to a decrease 
in the number of Tregs, thereby remodeling the immuno-
suppressive and inflammatory microenvironment.

Silicon‑based nanomaterials
Porous silica nanomaterials have great prospects in bio-
medicine as drug delivery carriers due to porous and 
good drug adsorption properties [95–98]. Durfee et  al. 
used MSN nanoparticles as the carrier to construct nan-
odrugs for active targeting of leukemia cells to deliver 
drugs [99]. Tao et al. prove that mesoporous silica micro-
particles can be used to enhance the toxicity of antican-
cer platinum drugs [100].

Arsenic‑based nanoparticles
Arsenic, as a traditional Chinese medicine, mainly 
includes arsenic and realgar. Arsenic trioxide, the active 
ingredient in arsenic, was first purified in the 1970s and 
used to treat APL, increasing the cure rate to more than 
90%. However, the high toxicity and side effects limit the 
further anticancer application of arsenic agents. In view 
of this, Peng et  al. prepared ATO into FA-HSA-ATO 
nanodrug to reduce the toxic and side effects of arsenic 
agents and improve the efficacy of targeted therapy [101]. 
Similarly, Richard et al. reported that nanoencapsulating 
ATO can significantly improve the therapeutic efficacy 
of leukemia and reduce the toxic side effects on ovaries 
[102]. However, the clinical pharmacokinetics and toxic-
ity of arsenic agents also need to be carefully studied to 
prevent excessive side effects [103, 104].

Realgar is another important arsenic agent, mainly 
composed of As4S4. Research evidence confirms that 
realgar has a similar therapeutic effect on APL as ATO, 
but it is insoluble in water and most organic reagents, 
resulting in poor bioavailability and limiting its clinical 
application. Inspired by nanodrugs, Wu et  al. demon-
strated that preparation of realgar into nanoparticles can 
increase bioavailability and enhance toxicity to cancer 
cells [105]. Shi et al. further confirmed the important role 

of caveolin-1 (Cav-1), a principal constituent protein of 
caveolae, in mediating the absorption of realgar nanopar-
ticles by leukemia cells [106]. In addition, it was shown 
that co-delivering realgar with other drugs also enhanced 
the antileukemia effect [107].

Metal nanoparticles
Gold nanoparticles
Gold nanoparticles are widely used as drug delivery car-
riers due to their good stability and adsorption ability. 
Molotkova and colleagues reported using gold nanoparti-
cles as carriers to deliver Bosutinib, a TKI, for CML ther-
apy [108]. Simon et al. constructed nanomaterials based 
on gold nanoparticles to deliver small molecule inhibitors 
of FLT3 for the treatment of AML [109]. On this basis, 
Suarasan et al. constructed gelatin-coated gold nanopar-
ticles as carriers of FLT3 inhibitors for the treatment of 
acute myeloid leukemia [110].

Silver nanoparticles
Silver nanoparticles have unique optical, electrical and 
catalytic properties and can be used in optical materials, 
battery electrodes and catalysts. In addition, nanosilver 
also shows certain application value in antifungal, anti-
viral, anti-inflammatory and anti-thrombosis and anti-
tumor and promoting wound healing [111]. There are a 
large number of reports on the application of nanosilver 
in the treatment of leukemia. In this section, we will sum-
marize it and select representative studies for elaboration.

Foldbjerg et  al. found that PVP-coated nanosilver can 
induce apoptosis and necrosis of THP-1 cells in a dose- 
and time-dependent manner [112]. This effect may be 
mediated by the increase in ROS caused by nanosilver. 
Similarly, Rajendrana et al. found that Ag NPs prepared 
from FA and CHA exhibited significant anticancer activ-
ity on K562 cells at a lower concentration due to ROS 
production and DNA fragmentation [113]. Hemmati 
et al. reported a simple, cost-effective and green method 
to synthesize Ag NPs nanomedicine using chitosan as a 
reducing agent and stabilizer [114]. These silver nano-
particles ranged from 20 to 30  nm, showing toxicity to 
32D-FLT3-ITD and murine leukemia C1498 cell lines. Ag 
NPs chitosan composite may be used as a chemothera-
peutic drug for the treatment of myeloid leukemia.

Interestingly, the shape of the nanoparticles also affects 
their toxicity to tumor cells. Sakaguchi et al. showed that 
the shape of Ag nanomaterials plays an important role 
in its anti-proliferative activity, and the activity of anti-
proliferative silver nanomaterials highly depends on its 
nanostructure [115]. The Ag nanoplates have significantly 
higher anti-proliferative activity against human promye-
locytic leukemia HL-60 cells than spherical nanoparti-
cles. The triangular Ag nanoplates can induce apoptosis 
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but are located in the same subcellular compartment as 
the spherical Ag nanoparticles. The research helps to 
design and optimize silver nanostructures for cancer 
treatment.

Magnetic nanomaterials
Magnetic nanomaterials are an important category of 
nanomaterials, typically ranging in size from 1 to 100 nm. 
As a new type of functional material, magnetic nanopar-
ticles have a broad application prospect in the field of 
magnetic materials and bioengineering [116]. Due to its 
special properties, it is easy to separate under the action 
of external magnetic field, which brings great conveni-
ence to the separation of target biological products. And 
because it can be rapidly enriched in magnetic field, it 
provides the possibility for targeted drug delivery. At pre-
sent, magnetic nanoparticles, as a carrier of targeted drug 
delivery and a tool of bioseparation technology, have 
received extensive attention and research.

Gang et  al. reported a Fe3O4-PLA nanocomposite 
material for drug delivery and explored the potential 
application of the daunorubicin (DNR) to the drug-resist-
ant leukemia K562 cells [117]. The new nanocompos-
ite can promote the interaction between the anticancer 
drug DNR and the targeted cancer cells and strengthen 
the accumulation of anticancer drugs in a single leu-
kemia cell. Similarly, Chen et  al. linked magnetic Fe3O4 
nanoparticles with Homoharringtonine (HHT), a natural 
cephalotaxine alkaloid, for tumor therapy, further dem-
onstrating the potential of magnetic Fe3O4 nanoparticles 
as a carrier [118].

Anisotropic nanoparticles have a longer blood circula-
tion lifespan than previous isotropic nanoparticles. Based 
on this strategy, Xiong et  al. fabricated superparamag-
netic anisotropic nanocomponents (SAN) and loaded 
vincristine (VCR) to form VCR-SAN nanoparticles [119]. 
VCR-SANs have rapid and sustained release behav-
ior, longer blood circulation and tissue distribution in 
the body and have strong antileukemia ability. Through 
in vivo and in vitro experiments, compared with the same 
dose of isotropic nanocomponent drugs, superparamag-
netic anisotropic nanocomponents loaded with VCR can 
treat leukemia more effectively [119]. Díez et al. reported 
the simple and effective combination of IONP nanopar-
ticles with bile acid–cisplatin derivatives to use as anti-
tumor drugs and demonstrated its cytotoxicity to T cell 
leukemia (Jurkat) cells [120].

Magnetic nanoparticles also show good properties in 
drug loading and delivery. El-Boubbou et al. have devel-
oped an iron oxide nanoformulation loaded with the anti-
cancer drug Doxironide, which can be used as a selective 
drug carrier for different types of AML [121]. Musawi 
et  al. prepared a chitosan-coated magnetic nanoparticle 

(CS-SPION) and loaded the anticancer drug paclitaxel, 
FA-CS-PTX-SPION, through reverse microemulsion 
technology [122]. FA-CS-PTX-SPION is spherical, with 
an average diameter of 90 ± 15  nm. Cytotoxicity experi-
ments on cancer cells (K562) and normal cells (GK-5) 
showed that FA-CS-PTX-SPION can significantly induce 
apoptosis on cancer cells, while there is no obvious toxic 
effect on normal cells.

In other blood cancer, Xia et al. constructed nanoparti-
cles using magnetic Fe3O4 nanoparticles as the carrier to 
deliver 2-methoxyestradiol for MDS treatment [123].

Other metallic nanoparticles
In addition to the commonly used metallic nanoparti-
cles as delivery carriers, other metal nanoparticles such 
as titanium oxide, calcium and palladium have also been 
used in leukemia treatment research.

Nanotitanium dioxide (TiO2) is a nanomaterial widely 
used in medicine and life sciences. Song et  al. reported 
the use of highly reactive TiO2 nanoparticles combined 
with daunorubicin to inhibit the MDR resistance of leu-
kemia K562 cells [124]. The principle of this strategy is to 
increase the intracellular concentration of targeted drugs 
through the synergistic effect of TiO2. Regarding the tox-
icity of TiO2 nanoparticles to blood cells, Cui et al. found 
that TiO2 nanoparticles are not toxic to macrophages 
THP-1 within a concentration range as high as 220  µg/
mL and showed that this is for any safe nanotechnology 
product [125]. It should become a necessary requirement.

Palladium nanoparticles have gained attention in pre-
cious metal nanoparticles due to their wide application in 
materials science and medicine. Li et al. reported the bio-
logical production of palladium nanoparticles (Pd NPs) 
using the aqueous leaf extract of Geranium Geranium to 
kill leukemia cells [126]. The in vitro cytotoxicity study of 
Pd NPs encapsulated by Geranium Geranium extract on 
human leukemia cell line (K562) showed a dose-depend-
ent cytotoxicity. The green synthetic Pd NPs will bring 
new opportunities to the biomedical field. Kaur et  al. 
developed a dual-functional nanocarrier using palladium 
[127]. The nanocarrier has anticancer and antibacterial 
activities and is prepared by a ligand insertion method by 
using cetyltrimethylammonium chloride and palladium 
chloride in a simple and cost-effective method. The Pal-
ladium surfactant shows cytotoxicity to human leukemia 
HL-60 cells, and the lower IC50 value indicated that it has 
the potential to be used as an anticancer agent.

As for other rare metal-based nanomedicines, Jurcic 
et al. reported a Targeted Alpha-particle Nano-generator 
Actinium-225 (225Ac)-lintuzumab (anti-CD33) nano-
medicine for the treatment of acute myeloid leukemia 
(AML) [128]. Cerium oxide nanoparticles have been 
proven to scavenge free radicals and have the potential 
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to be used as disease treatment agents. Patel et al. used 
human monocytic leukemia cells (THP-1) as a model to 
evaluate the uptake and free radical scavenging activ-
ity of nanocerium oxide [129]. The data showed that the 
internalization of nanocerium oxide in THP-1 cells was 
significantly increased in a concentration-dependent 
(10–100  µg/mL) manner. Although no cytotoxicity was 
observed at these concentrations, nanocerium oxide sig-
nificantly reduced the amount of reactive oxygen spe-
cies. This study shows that cerium oxide has therapeutic 
potential in diseases such as cancer [129].

For other blood cancer, briefly, Chen et al. constructed 
a nanoparticle using cadmium telluride quantum dots as 
nanocarriers to deliver DOX for MM treatment [130]. Li 
et  al. proved that zinc oxide nanoparticles could induce 
apoptosis of MM cells, which was a potential clinical 
agent for MM [131].

Nanotechnology for improving HSCT
Nanotechnology to promote bone marrow transplantation
Expansion of HSCs ex vivo
Thomas first utilized HSCT in leukemia treatment in the 
1960s [132]. HSCT is the most promising therapy to cure 
blood diseases and is usually applied during the remission 
period of leukemia. After high-dose treatment with cyto-
toxic drugs or radiation to destroy the abnormal hemat-
opoietic system and cancer cells temporarily and entirely, 
autogenic or allogenic HSCs are perfused into patients to 
restore the functional bone marrow and reestablish the 
hematopoietic and immune systems. Clinically, HSCT is 
usually performed after remission from chemotherapy in 
HMs patients. Patients who undergo HSCT also face the 
risk of recurrence, and severe graft-versus-host disease 
(GVHD) is also an important factor limiting the effec-
tiveness of HSCT [133].

However, the lack of donor HSCs is an important fac-
tor limiting the effectiveness of HSCT, so increasing the 
number of HSCs is an effective strategy for improving 
HSCT. Ex  vivo expansion of stem cells requires more 

complex conditions than that of mature cells. The use of 
nanomaterials to expand stem cells has been extensively 
investigated [134–138]. Specially, nanomaterials hold 
great promise for maintaining the ex  vivo expansion of 
HSCs (Fig. 3).

The bone marrow microenvironment plays an impor-
tant role in maintaining the homeostasis and expansion 
of HSCs [139–141]. Mimicking the bone marrow micro-
environment ex vivo is an effective strategy to maintain 
HSCs [142, 143].

Hydrogel is commonly used for expanding stem cells 
ex  vivo [144]. Gvaramia and his colleagues studied the 
biochemical and biophysical signals that influence the 
maintenance and proliferation of hematopoietic stem 
cells in the form of hydrogels [145]. Bai et  al. reported 
an amphiphilic hydrogel that can amplify HSCs [18]. 
Mechanically, the microenvironment provided by the 
hydrogel can reduce the ROS level of HSC cells, thus 
facilitating HSC amplification. In addition, similar work 
has demonstrated the feasibility of expanding cells with 
hydrogels [146, 147]. In addition, microcavity arrays 
also can be used to mimic the bone marrow microenvi-
ronment for HSCs expansion [148]. Ferreira et  al. con-
structed a fibrin scaffold for the expansion of cord blood 
hematopoietic stem cells in  vitro [149]. Predictably, if 
the microenvironment is not conducive to the mainte-
nance of the HSC, the HSC will loss of quiescence and 
self-renewal capacity [150]. Finally, it is also very impor-
tant to understand the mechanism of the signaling path-
way between hematopoietic cells and material matrix 
[151–154].

Nanoparticles can also promote HSCs amplifica-
tion in  vitro. PVA nanomaterials are widely used in 
LCD electronic screens, semiconductors and other 
applications. Wilkinson et  al. reported that polyvi-
nyl alcohol (PVA) can be used to amplify the number 
of HSCs [155]. In mouse experiments, the results of 
transplantation proved that the hematopoietic capacity 
of expanded HSCs was not affected by PVA treatment. 

Fig. 3  Strategies to expand hematopoietic stem cells ex vivo. Using hydrogels, polymer fibers and bone marrow biomimetic materials such as 
porous materials to obtain a large number of HSCs and improve the efficiency of HSCT
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Bari’s work demonstrated that the use of functional-
ized carbon nanotubes can promote in vitro expansion 
of human cord blood hematopoietic stem progeni-
tor cells [156]. The mechanism is due to the reduction 
of mitochondrial superoxides and caspase activity in 
CD45 + cells. In addition, a variety of nanofibers can 
also be used to amplify HSCs [157, 158].

Promote immune reconstitution after HSCT
After HSCT, the immune system cannot be rebuilt imme-
diately, and thus, patients are susceptible to bacterial 
infection or external stimulation, finally leading to failure 
of transplantation. The efficiency of the reconstitution of 
the immune system after HSCT is an important factor 
affecting the prognosis of patients. Shah et  al. reported 
a method to facilitate T cell reconstruction and immune 
response after HSCT [159]. This study used an alginate 
hydrogel to mimic the bone marrow microenvironment, 
and this artificial scaffold can considerably promote the 
differentiation and reconstruction of immune cells.

Enhancing immunotherapy
Immunotherapy is a major milestone in cancer treatment 
and is the most promising way to completely control 
cancer [160]. Tumor immunotherapy has a century-old 
history, including vaccines, cytokines, antibody drugs, 
immune checkpoint inhibitors, adoptive cell therapy and 
many other technologies [161]. The earliest immunother-
apy can be traced back to Dr. William Colley’s “Colitoxin” 
in the late nineteenth century. Now, we know that the 
main component of “Colitoxin” is tumor necrosis factor 
α (TNF-α). With the advancement in immunology, the 
discovery of different immune checkpoints has revealed 
new approaches for antitumor immunotherapy. Block-
ing immune checkpoints have been found to eventually 
enhance the antitumor effects of the immune system. 
Immunotherapies have achieved good progress in cancer 
treatment [162]. The combination of immune checkpoint 
inhibitors and chemotherapy or targeted drugs also has 
achieved good results [163].

Utilizing nanotechnology to enhance immunotherapy 
holds great promise in cancer research [26]. The appli-
cation of nanotechnology to enhance the therapeutic 
effect of immunotherapy for hematologic malignancies 
shows great prospect for HMs patients. By summarizing 
the approved or under test nanodrugs for HMs (Table 2), 
we found that they are mainly focus on enhancing drug 
delivery, while there are no reports of nanodrugs for acti-
vating the immune system. In this section, we will intro-
duce nanodrugs for immunotherapy against hematologic 
malignancies.

Stimulating immune response
The high recurrence rate is a key factor leading to the low 
five-year survival of leukemia [164]. An effective strategy 
to prevent the recurrence of leukemia is to promote the 
body forming a lasting immune memory. Vaccines play 
an important role in the formation of immunological 
memory, but traditional bulk vaccines have low immuno-
genicity and cannot effectively stimulate the body to pro-
duce a durable immune response. The encapsulation of 
traditional antigens into nanoparticles or nanomaterials 
can considerably boost the immune system’s recognition 
of antigens [165].

Using biological materials is an effective way to improve 
the immune system’s recognition of antigens (Fig.  4). 
Mooney et al. reported that a hydrogel-based AML vac-
cine can produce a long-lasting immune response in the 
body [166]. The vaccine uses MA-alginate hydrogel as the 
framework and loaded with leukemia antigen polypep-
tide WT1126-134 and immune adjuvants inside. In ani-
mal experiments, the vaccine can prevent the recurrence 
of leukemia.

Nanoparticle formulations also improve the immune 
system’s recognition of antigens. Ma et  al. reported a 
therapeutic leukemia vaccine [167]. The vaccine com-
prises porous PLA microspheres loaded with PD-1 anti-
body and leukemia antigen polypeptide pE. The vaccine 
can enhance the APC response at the injection site and 
recruit more APC cells, enhance the proliferation of T 
cells in lymph nodes and increase the toxicity of cyto-
toxic T cells to leukemia cells. Animal experiments show 
that the vaccine can prolong survival and prevent the 
recurrence of leukemia in both CDX and PDX leukemia 
model mice.

Boosting the immune system is also an effective strat-
egy for lymphoma and myeloma. Enhancing the body’s 
immune response and memory is an effective strategy to 
prevent recurrence. Islam et al. reported a nanomedicine 
that can enhance the immune response to lymphoma 
[168]. Regarding myeloma, Bae et  al. reported a BCMA 
peptide-engineered nanoparticle for the enhanced clini-
cal treatment of multiple myeloma by enhancing the 
function of CD8 + cytotoxic T lymphocytes [169]. Please 
refer to Table 3 for a detailed summary.

Improve car‑T therapy
CAR-T therapy has made progress in the treatment of 
refractory and relapsed B cell leukemia and lymphoma. 
Due to the lack of suppressive cells in the TME, such as 
in solid tumors, CAR-T cells and immune cells can eas-
ily access cancer cells and then kill them. However, the 
preparation of CAR-T cells is complicated and costly 
and may cause serious CRS side effects, which seriously 
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restricts their application. To simplify the preparation 
process, Smith et  al. reported a method for prepar-
ing CAR-T cells in  vivo by using nanoparticles [170]. 
This nanoparticle comprises a PGA polymer, which is 

modified with CD3 antibody for T cell targeting on the 
surface, and the plasmid which expressing chimeric 
antigen receptor was loaded inside. These nanoparticles 
can achieve in  vivo editing and can substantially pro-
long the survival of mice in animal experiments.

Fig. 4  Strategies to boost immunotherapy. A Encapsulation or preparation of antigens into the form of nanoparticles can enhance activation of 
APC cells. B Activated APC can enhance the ability of T cells to kill tumor cells

Table 3  Representative nanomaterials in treating HMs that stimulate the immune system

APC Antigen-presenting cell, WT1 Wilms tumor protein 1, GM-CSF Granulocyte–macrophage colony-stimulating factor, LNT cells Liquid nitrogen-treated cells, DOX 
Doxorubicin, TLR Toll-like receptors, PLGA Poly(lactic-co-glycolic acid), BCMA B cell maturation antigen

Nanomaterials Payload Ind. Outcome References

PLA microspheres PD-1 antibody and leukemia antigen polypeptide pE Leu Enhance the APC response, recruit more APC cells, 
enhance the proliferation of T cells in lymph nodes

[167]

Hydrogel Antigen polypeptide WT1126-134 and immune adju-
vants (GM-CSF)

Leu Induce local immune-cell infiltration and activate 
dendritic cells

[166]

LNT cells DOX Leu Promote antitumor immune responses [171]

HSCs aPD-1 Leu Increase the number of active T cells, produce 
cytokines and chemokines

[172]

Lipid-PEG mRNA, palmitic acid-modified TLR7/8 agonist R848 
(C16-R848)

Lyn Improve the expansion of OVA specific CD8 + T cells [168]

PLGA NPs BCMA72 − 80[YLMFLLRKI] peptide MM Increase peptide delivery to human dendritic cells, 
which enhance induction of BCMA-specific CTL

[169]
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Improve diagnostic accuracy
The clinical diagnosis of HMs currently mainly relies on 
blood, bone marrow, cytochemical staining and labe-
ling of monoclonal antibodies to detect leukemia cell 
surface differentiation antigens and other biochemical 
detection methods. Currently, there is still lack of sensi-
tive and specific molecular biology detection methods. 
Unclear detection of leukemia leads to undertreatment 
or overtreatment and side effects, seriously affecting 
the patient’s survival.

The emergence of nanotechnology has made the diag-
nosis of tumors more accurate. With the help of the 
paramagnetic and fluorescent labels of nanoparticles, 
the location and progress of cancer cells can be accu-
rately diagnosed. For example, a micro-nanodiagnos-
tic instrument can be implanted in the human body 
to run with the blood, and real-time transmission of 
internal information to the external recording device. 
Nanotechnology can make the diagnosis of leukemia 
more rapid and accurate [32], thereby contributing to 
treatment and prognosis [173]. The early diagnosis of 
tumors, especially malignant tumors, is very important 
to help improve clinical diagnosis results and choose 
effective treatment methods.

Electrochemical-based nanotechnology is widely 
used in diagnosis of leukemia [174–177]. Hu et  al. 
reported a gold nanoparticle-modified glassy carbon 
electrode (GCE) used to distinguish different leukemia 
cancer cells [178]. By changing the ratio of reagents 
and the deposition time, gold nanoparticles of different 
sizes can be deposited on the GCE, and the increase in 
the concentration of cysteine may cause the Au parti-
cles to increase significantly. The changes in the elec-
trochemical behavior of the probes were detected on 
the Au NPs-modified GCE, and the changes in the elec-
trochemical signal for different cancer cells can identify 
different target cells. This study provide a new strategy 
for the rapid identification of leukemia cells [178].

Antibody-modified nanoparticles can also be used 
to track tumor cells and improve diagnostic accuracy 
[179]. Chaudhuri et  al. reported that a fluorescently 
labeled antibody-conjugated nanotube can be used 
to quickly and label-free detect CD45 + microvesicles 
from leukemia cells in about 30  min [180]. The detec-
tion principle is based on the molecular recognition 
between antigens and antibodies.

Magnetic multifunctional probes have broad pros-
pects in the fields of biomedical research and diagno-
sis. Song et  al. have developed a monoclonal antibody 
(mAb)-conjugated magnetic nanobiological probes 
(FMBMNs) to detect and isolate a single type of tumor 
cells [181]. The probe can sensitively and efficiently 

detect and separate a variety of tumor markers or 
tumor cells from complex samples.

Temperature responsive nanotechnology can also be 
used to detect leukemia cells. Gold nanorods are widely 
used in nano-biodiagnosis research. The high level of 
lysozyme expression is a characteristic sign of leukemia. 
Moghadam et al. reported a gold nanorod that can induce 
aggregation at high temperature for rapid visual detec-
tion of lysozyme in serum. The gold nanorods are func-
tionalized by connecting nucleic acid aptamers targeting 
lysozyme. Exposure of the nanoprobe to nanomolar level 
of lysozyme will cause specific structure aggregation. 
This research shows that the use of thermally induced 
gold nanorod aggregates has a broad prospect as a nano-
diagnostic technology [182].

Nanomedicine strategies against HMs
Principle of design nanomedicine is to specifically target 
and eliminate cancer cells while minimizing side effects. 
Based on tumor antigens which are highly expressed on 
the surface of cancer cells, modifying antibodies, pep-
tides or aptamers that specifically recognize tumor anti-
gens on the surface of nanoparticles is the most common 
strategy for nanomedicine design. According to recently 
reported HMs nanomedicines [183–192], we categorized 
the nanomedicines into four strategies: a. targeting the 
TME; b. targeting cell surface antigens; c. targeting intra-
cellular signaling; and d. overcoming the drug resistance 
and enhance chemotherapy effect. In this chapter, we will 
elaborate on these strategies.

Targeted disease organs
Bone marrow
The bone marrow is the main site for the pathogenesis 
and infiltration of leukemia and myeloma cells [193]. 
Residual cancer cells hidden in the bone marrow are 
the key factor for recurrence [194]. Thus, targeting bone 
marrow to deliver drugs is a promising strategy for the 
treatment of leukemia (Fig. 5). Hu et al. reported a strat-
egy utilizing hematopoietic stem cells (HSCs) to deliver 
drugs to bone marrow [172]. In principle, taking advan-
tage of the natural homing properties of HSCs to the 
bone marrow, platelets modified with a PD-1 antibody 
were attached on the surface of HSCs. The drug-loaded 
platelets targeted the bone marrow microenviron-
ment along with HSCs and then released PD-1 drugs to 
enhance the effect of immunotherapy. In animal experi-
ments, this drug considerably prolonged the survival of 
leukemic mice. Similarly, Ci et  al. also reported a strat-
egy that uses dead AML cells as carriers for the targeted 
delivery of drugs to the bone marrow [171]. This strategy 
uses liquid nitrogen-treated AML cells to generate a drug 
delivery system with bone marrow targeting properties, 
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which improves the accumulation of chemotherapeu-
tic drugs in the bone marrow and inhibits the progres-
sion of leukemia. Using the self-antigens of cancer cells 
combined with immune adjuvants, the immune cells can 
be stimulated to kill cancer cells. In animal experiments, 
this nanomedicine combined with immunotherapy sub-
stantially improved the survival time of leukemic mice. 
Biomimetic nanoparticles have considerable advantages 
in drug delivery. Dong et  al. generated a biomimetic 
nanomedicine using the leukemia cell membrane for 
bone marrow drug delivery [195]. The drug has a core–
shell structure and coated with NALM-6 leukemia cell 
membrane which were modified with TGFβRII antibody. 
The antibody is connected by a linker that responds to 
hypoxia and is inserted into the cell membrane. The core 
is an MSN structure carrying the chemotherapy drug 
DNR. The drug responds to the hypoxia signal in the 
bone marrow microenvironment of mice, then releases 
TGFβRII antibody and finally releases chemotherapeu-
tic drugs to kill cancer cells. In a mouse model, the drug 
substantially prolonged the lifespan of leukemic mice. 
Similarly, myeloma cancer cell biomimetic nanoparti-
cles loaded with drugs are also used in myeloma therapy 
[196].

Bone
Bone is the place where myeloma cells survive and plays 
an important role in the occurrence and relapse of MM. 
Targeting bone to delivery drugs is an effective strategy. 
Swami et  al. reported an MM nanomedicine for target-
ing the bone microenvironment [197]. Similarly, Fed-
erico et al. reported a tumor microenvironment-targeted 
nanoparticle loaded with bortezomib and a ROCK 
inhibitor for the treatment of MM [198]. Stromal cells 
play an important role in the TME. Wang et  al. gener-
ated a nanoparticle that dually targets myeloma cells and 

cancer-associated fibroblasts for treatment of MM [199]. 
Wu et  al. constructed a bone-targeting nanoparticle for 
co-delivery of decitabine and arsenic in the treatment of 
MDS [200].

Lymph nodes
Lymph nodes (LNs) are the place where lymphocytes 
develop and mature, and also the place where lympho-
cytes transform into cancerous cells. Lymphoma has the 
characteristics of solid tumors, such as the presence of 
the immunosuppressive microenvironment and a high 
level of inflammation. Thus, targeted LNs delivery of 
drugs is an effective strategy for targeted elimination of 
lymphoma cancer cells. Schudel et  al. reported a nano-
medicine that can target the lymph nodes and can con-
siderably inhibit the growth of lymphoma [201].

Targeting cancer cells
Targeting the surface antigens of cancer cells is the most 
basic nanomedicine design strategy (Fig. 6). According to 
the biological functions of surface antigen, we divide leu-
kemia surface antigens into three categories: (1) metab-
olism-related antigens, such as CD71 [202], FA receptor 
[203], PTK7 [204]; (2) immune antigens, such as CD19 
[58, 205, 206], CD3 [207], CD33 [128, 208], B220 [209], 
CD117 [210], CD123 [211] and IL-1RAP [212], and (3) 
cell adhesion or migration-associated antigens, such as 
ITGB2 [93], CXCR4 [213] and CD44 [64]. The following 
is a detailed description of the above-mentioned antigen 
(Table 4).

The leukemia cells highly and stably express the trans-
ferrin receptor CD71 on the cell membranes due to the 
high demand for iron and abnormal iron metabolism. 
Based on this trait, Ma et al. designed a high-affinity arse-
nic nanomedicine based on ferritin for specifically target-
ing leukemia cells [202]. This nanomedicine uses ferritin 

Fig. 5  Strategies to target bone marrow microenvironment. A Cell membrane biomimetic nanoparticles are used to target bone marrow to deliver 
drugs. B Using the intrinsic bone marrow homing ability, living cells can be used as drug delivery carriers to target bone marrow for leukemia
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Fig. 6  Targeting the surface antigens. A Drug delivery platforms against HMs. B Representative cell surface targets of HMs nanomedicine

Table 4  Representative nanomedicine targets and design of HMs

PTX Paclitaxel, C61 Spleen tyrosine kinase (SYK) P-site inhibitor, NB Nile Blue, DNR Daunorubicin, Cas9 RNP Cas9/single guide RNA (sgRNA) ribonucleoprotein 
[lipidoid nanoparticle (LNP)], MSCM-NF Mesenchymal stem cell membrane-coated nanofibril, PTL Parthenolide, 6-MP 6-mercaptopurine, CS Chitosan, PEO-b-PBC 
Poly(ethyleneoxide)-block-poly(α-benzylcarboxylate-ε-caprolactone)

Targets Carrier Drug Ind. Outcome References

CD19 Liposome DOX ALL Significantly prolonged the survival of mice [205]

LNP C61 ALL Consistently caused apoptosis in B-precursor ALL cells [58]

Au NPs NB ALL Proved superior cytotoxic effect against CCRF-SB cells [206]

CD3 Gelatin NPs ALL Significantly increased cell absorption and internalization [207]

B220 MSN DNR AML Efficiently incorporated into and preferentially kill LSCs [209]

CD117 CPSNPs ICG CML In vivo efficacy of PDT was dramatically enhanced [210]

CD123 PMBN PTX/GA-A AML Increased anti proliferation of cells [211]

CdTe QDs DNR MDS Effectively inhibited the tumor growth of MDS-bearing nude mice [216]

IL-1RAP Cas9 RNP MSCM-NF AML Reduced LSC colony-forming capacity and leukemic burden [212]

CD71 Fn Arsenic AML Exerted strong antileukemia effects in diverse xenograft models [202]

PTK7 MS2 Porphyrins AML Killed Jurkat cells selectively even when mixed with erythrocytes [204]

CXCR4 Micelle Peptide E5 AML Significantly inhibited the engraftment of leukemic cells in spleen and BM [213]

CD44 PLGA PTL AML Improved the bioavailability and selective targeting of leukemic cells [64]

FA CS 6-MP ALL Significantly elevated tumor intracellular drug release [203]

CD40 PLGA MTV ALL Significantly reduced tumor volume with increased caspase-3 activity [231]

CD20 PLGA AZD-2014 Lyn Significantly improved efficacy of AZD-2014 against NHL cells [220]

CD22 NK-92MI Sialyl Lewis X Lyn Exhibited significantly enhanced tumor cell binding and killing [232]

CD38 PBCL S3I-1757 MM Significantly reduced the tumor size by fourfold compared to S3I-NP [227]

PDGFR-β PLA PTX MM Simultaneous clearance of CAF cells and MM tumor cells [199]
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particles as a carrier for delivering the arsenic drug and 
achieves the same antileukemia effect while reducing the 
dosage of the arsenic. This result was observed in a pre-
clinical study, and the actual effect needs to be clinically 
verified. Similarly, Macone et al. delivered cytochrome C 
using ferritin as nanocarriers for the treatment of APL 
leukemia with high expression of CD71 on cell surface 
[214].

Cancer stem cells (CSCs) play a key role in the patho-
genesis and relapse [215]. Conventional chemotherapy 
and immunotherapy cannot completely eliminate the 
leukemia stem cells (LSCs) hidden in the bone marrow. 
Thus, targeted elimination of LSCs is the key to prevent-
ing recurrence and ultimately curing leukemia. The main 
targets of nanomedicines against LSC include CD33, 
B220, CD117, CD123, and IL-1RAP. Alambin et al. gen-
erated a nanodrug targeting CD123 molecules on the 
surface of LSCs [211]. This nanomedicine comprises a 
PMBN polymer, and the ligand IL-3 for binding to the 
CD123 receptor on the surface of LSCs. In the mouse 
model, this nanodrug can considerably prolong the sur-
vival of leukemia model mice. In addition to being a tar-
get for leukemia cells, CD123 can also be used as a target 
for MDS nanomedicine. Guo et al. reported a nanomedi-
cine modified with CD123 antibody for the treatment of 
MDS [216]. The nanomedicine uses daunorubicin loaded 
CdTe quantum dots as a carrier, and the surface is modi-
fied with CD123 mAb for targeting high-risk MDS cells. 
Animal experiments showed that the nanomedicine 
could significantly reduce tumor burden. Mandal et  al. 
reported a nanomedicine targeting the B220 antigen on 
the surface of AML stem cells [209]. This nanomedicine 
uses mesoporous silica nanoparticles (MSNs) as a carrier, 
which is modified with B220 antibody on the surface and 
loaded with the chemotherapeutic daunorubicin inside. 
In vitro experiments show that this nanomedicine (anti-
B220 MSN-DN) can be effectively absorbed by leukemia 
cells and preferentially kill B220-positive AML stem cells. 
In  vivo experiments showed that after short-term pre-
treatment with this nanomedicine, the pathogenicity of 
AML stem cells was substantially reduced.

Leukemia stem cells prefer to live in the bone marrow. 
Ho et  al. generated a nanomedicine for targeting leuke-
mia stem cells in the bone marrow and delivered gene 
editing tools to silence oncogenes [212]. The nanomedi-
cine was injected into the bone marrow of mice, targeted 
leukemia stem cells through CXCL12α-mediated chemo-
taxis and released the Cas9 plasmid and IL1-RAP sgRNA 
intracellularly to silence the gene. The nanomedicine can 
considerably prolong the survival time of mice in the 
leukemia mouse model. Brian et al. developed a PDT 
therapy via targeting leukemia stem cells using CPSNP 
calcium phosphate nanoparticles loaded with ICG [210]. 

Among them, ICG is used as a photosensitizer for leu-
kemia PDT and specifically targets the surface mole-
cules CD117 or CD96 of leukemia stem cells through a 
bio-conjugation method. In the leukemia mouse model, 
the in  vivo therapeutic effect of PDT was significantly 
improved by using ICG-CPSNPs targeting CD117. Stud-
ies have shown that CPSNPs targeted to leukemia stem 
cells and loaded with ICG are expected to treat relapsed 
and multidrug-resistant leukemia.

In lymphoma, construction nanomedicines for tar-
geting lymphoma cells are also getting a lot of atten-
tion. Generating nanomedicine specifically targeting 
lymphoma cells is the basic strategy. The targets of lym-
phoma nanomedicines mainly include CD20, CD40, 
folate receptor (FR) and BCR. Qiu et al. generated a nan-
odrug targeting folate receptors (FR) on the surface of 
lymphoma cells [217]. Similarly, Zhao et  al. generated a 
biomimetic silver nanoparticle for targeting FA receptors 
on lymphoma cells [218]. Regarding other targets, Nevala 
et  al. reported an CD20 antibody-modified paclitaxel-
loaded nanoparticle for the treatment of CD20 + B cell 
lymphoma [219]. Tang et al. reported a rituximab (anti-
CD20)-modified AZD-2014 encapsulated nanoparticle 
for killing B lymphoma cells [220]. Torino et al. reported 
a BCR-targeted multimodal imaging-engineered nano-
particle for the therapeutic and diagnosis of B cell lym-
phoma [221].

In other blood cancer, nanomedicine studies have also 
increased in recent years [222–224]. Based on the highly 
expressed antigens on the surface of myeloma cells, the 
targets of MM nanomedicines mainly include CD38, 
folate receptor (FR) and VLA4. Omstead et al. first per-
formed an in  vivo evaluation of use CD38 and CD138 
as targets for nanoparticle-based drug delivery in MM 
[225]. Puente et al. reported a CD38-targeting nanopar-
ticle for enhancing bortezomib activity and the specific-
ity of proteasome inhibition in MM [226]. Huang et  al. 
showed that modification of anti-CD38 on nanoparticles 
carrying STAT3 inhibitors can improve the therapeu-
tic effect of myeloma [227]. Similarly, Yu et  al. gener-
ated a CD38-targeted daratumumab immunopolymer 
for chemotherapy of MM [228]. Regarding other targets, 
Fontana et al. reported a VLA4-targeted nanoparticle for 
the treatment of MM that functioned by hijacking cell 
adhesion-mediated drug resistance [229]. Nigro et  al. 
generated bortezomib-loaded mesoporous silica nano-
particles (MSNs) targeting FA receptors to selectively 
alter metabolism and induce the death of myeloma cells 
[230].

Targeting intracellular signaling pathways
Abnormal activation of intracellular signaling is an 
important signature of cancer cells. In CML cells, the 
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BCR-ABL fusion gene is continuously highly expressed. 
This gene encodes a tyrosine kinase, which plays a key 
role in maintaining the survival of leukemia cells. In this 
context, Liu et al. reported a nanomedicine for targeted 
degradation of the BCR-ABL fusion gene in CML cells 
[233]. In an animal model, this nanomedicine could sub-
stantially prolong the survival of mice. Similarly, Vinhas 
et al. designed an Au nanoparticle-based AuNP@PEG@
e14a2 for silencing BCR-ABL fusion gene overexpressed 
in CML [234].

Mutations of genes involved in epigenetic pathways 
play an important role in the pathogenesis of leukemia. 
The Bim1 gene has been reported to maintain the stabil-
ity of histones in the nucleus. Kushwaha et  al. reported 
a nanomedicine for targeting and degradation of Bmi1 
mRNA in leukemia cells. The drug uses PEI and has as 
nanocarriers and encapsulates si-Bmi1 for Bmi1 gene. 
In animal experiments, this nanomedicine substantially 
prolonged the survival of diseased mice [235]. Similarly, 
Chandran et al. reported a study using HSA as nanocarri-
ers to deliver HDAC inhibitors for AML treatment [236].

Besides specific signaling molecules, abnormal activa-
tion of pathways also plays an important role in cancer 
cell survival. Deng et al. designed a Au nanomedicine to 

target the NCL/miR-221/NF-kB/DNMT1 pathway in leu-
kemia cells [237]. In mouse experiments, this nanomedi-
cine could considerably prolong the lifespan of leukemic 
mice. Similarly, Dash et  al. generated a nanomedicine 
that can trigger apoptosis mediated by the ROS/TNF-α 
pathway in leukemia cells [238].

Besides cell surface antigens, intracellular signaling 
molecules and metabolic pathways, such as Ara-KB, 
hypoxia and autophagy pathways, can also be used as 
targets to design nanomedicines (Fig. 7). Li et al. gener-
ated a tissue factor-targeted “O2-Evolving” nanoparticle 
for photodynamic therapy of malignant lymphoma [239]. 
AZD2811 is an aurora kinase B inhibitor that disrupts cell 
mitosis. Its precursor, AZD1152, has shown promising 
results in clinical trials against acute myeloid leukemia, 
but with severe myelosuppression side effects. So the 
researchers developed Accurins, a nanodrug that con-
tains different concentrations of AZD2811. Floc’h et  al. 
proved that the nanoparticle formulation of AZD2811 
had stronger anti-B cell tumor effect [240]. Martucci 
et  al. have developed a nanodrug targeting BCL-2 for 
the treatment of B cell lymphoma [241]. Lin et al. gener-
ated an iron oxide nanoparticle that could remotely and 
magnetically control the autophagy process in mouse B 

Fig. 7  Targeting the intracellular signaling pathways
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lymphoma cells [242]. Adjuvants play an important role 
in cancer treatment. Lin et al. reported that preparing the 
adjuvant into the form of nanoparticles can enhance the 
killing effect of lymphoma cells [243]. Shadab et al. dem-
onstrated that asparagine-laminated gold nanoparticles 
(Asn-AuNP conjugates) can enhance toxicity to leukemia 
cells by targeted intracellular heat transfer [244].

Enhanced pharmacokinetics
Reverse drug resistance
Drug resistance in cancer cells is an important fac-
tor leading to poor chemotherapy outcome and cancer 
recurrence. Increasing the uptake of drugs in cancer cells 
is an effective strategy to improve the tumor killing effect. 
Nanoparticles loaded with chemotherapeutic drugs can 
considerably increase the uptake and accumulation of 
drugs in cells and enhance the therapeutic efficacy of free 
chemotherapy drugs [245, 246].

Ion channel proteins on cell surface play a key role in 
mediating drug resistance. The P-glycoprotein plays 
an important role in the drug resistance of cancer cells. 
Li et  al. reported a strategy to use carbon nanotubes to 
overcome leukemia drug resistance [87]. The drug uses 
single-walled carbon nanotubes as a carrier, modified the 
P-gp antibody on the surface of the carbon nanotubes 
and encapsulated the chemotherapeutic drug DOX inside 
the nanotubes. In vitro results confirmed that this strat-
egy can significantly increase the accumulation of Dox in 
K562 cells, enhance the toxicity to cancer cells and over-
come cell resistance. Similarly, Zhang et  al. designed a 
PLA polymer nanoparticle surface modified with P-gly-
coprotein antibody to overcome AML resistance and 
improve the therapeutic effect [247]. In addition, Song 
et  al. reported that modification of the chemothera-
peutic drug DNR on the surface of TiO2 nanoparticles 
by electrostatic adsorption can drastically increase the 
accumulation of DNR in K562 cells and reduce P-glyco-
protein-mediated drug resistance [124].

The role of the ABC protein family in mediating drug 
resistance has been widely reported. Man et al. reported 

that modifying DNRs on the surface of nanodiamonds 
can bypass ABC transporter-mediated drug resistance 
and increase the accumulation and toxicity of DNRs in 
cancer cells [91].

Organic polymer materials and biological macromol-
ecules are also used as nanocarriers to load chemother-
apeutics to overcome drug resistance. Guo et  al. loaded 
the chemotherapeutic drug DNR and the photosensi-
tive molecule NIR797 into PEG-PLL-PLGA polymer 
nanoparticles [66]. In  vitro experiments proved that 
the nanoparticles can substantially increase the toxicity 
to leukemia cells. Albumin aggregates are widely used 
as drug delivery vehicles in cancer research. Wu et  al. 
designed an albumin-based nanodrug system to increase 
drug load and achieve controlled release of Doxorubicin 
[248]. This drug can enhance the accumulation of DOX 
drugs in cells and overcome drug resistance. Similarly, 
Kayani et  al. reported that used bovine serum albumin 
nanoparticles as delivery carriers and encapsulated Dox 
to prepare DOX-DBSA-NPs can enhance the killing 
effect of drugs on leukemia cells and reverse drug resist-
ance [249].

Improving the chemotherapy
Enhancing the drug toxicity to cancer cells is also an 
effective strategy for enhancing the therapeutic effect. 
We selected representative nanomedicine to demonstrate 
their better pharmacokinetics and therapeutic effects 
compare to non-nanomedicine (Table 5).

Qin et  al. proved that conjugation of photosensitizers 
sulfonated aluminum phthalocyanine with chemotherapy 
drugs DOX can significantly improve the efficacy of pho-
todynamic therapy for leukemia [250]. Kim proved that 
conjugation of the macromolecular prodrug of doxoru-
bicin with the biodegradable cyclophosphazene contain-
ing tetrapeptide can improve the drug treatment effect 
[251]. Similarly, hematoporphyrin–platinum(II) con-
jugates also enhance the killing effect of platinum drug 
against leukemia cells [252]. For other types of hemat-
opoietic malignancies, Che et  al. demonstrated that 

Table 5  Comparison between nanomedicine and non-nanomedicine against HMs

DAC 5-Aza-2ʹ-deoxycytidine, BTZ Bortezomib, VCR Vincristine

Drugs Carrier Outcomes compared with non-nanomedicine or free drugs Ind. References

Ara-C, DNR Liposome Exhibited potent and direct ex vivo cytotoxicity against AML blasts Leu [39]

VCR Liposome Improved the pharmacokinetics and pharmacodynamics of vincristine Leu [38]

C6-ceramide Liposome Selective inhibition of the glycolytic pathway in CLL cells CLL [51]

DOX AlPcS Enhanced the cellular uptake of AlPcS three times and PDT therapy Leu [250]

Platinum MSN Exhibited unprecedented enhanced cytotoxicity to cancerous cells Leu [100]

DAC,BTZ PEG-PCL Good stability, slow release profile, and superior anticancer effects MM [253]

As4S4 Realgar NPs Significantly depleted the stem-like proportion and clonogenicity MM [254]



Page 17 of 26Li et al. Journal of Hematology & Oncology           (2023) 16:65 	

nanoparticles encapsulating both bortezomib and DAC 
significantly enhanced the toxicity to MM cells [253].

Perspectives
Enhancing CAR‑T therapy through nanotechnology
Enhancing the function of CAR-T cells through nano-
technology is an extremely promising field in cancer 
treatment [255]. Nanotechnology needs to be explored 
to overcome or reduce the exhaustion and side effects of 
CAR-T therapy [256]. Nanoparticles can be attached to 
the surface of CAR-T cells to enhance the killing func-
tion of CAR-T cells. Tang et al. reported a TCR-signaling 
responsive nanoparticle to improve the killing of CAR-T 
cells [257]. Similarly, the use of click chemistry to attach 
cytokines to the cell surface can also be used to enhance 
CAR-T therapy [258]. Similarly, click chemistry was used 
to attach nanoparticles to the surface of CAR-T cells to 
enhance CAR-T cell killing. By linking ICG-loaded nan-
oparticles onto the surface of CAR-T cells, combined 
with photodynamic therapy, the immune barrier of solid 
tumor was destroyed, and the infiltration and antitumor 
effect of CAR-T cells were enhanced [259]. Similarly, by 
modifying anti-CD3/CD28 immunomagnetic beads on 
the surface of CAR-T cells, combined with magnetic–
acoustic methods, the activation and proliferation of 
CAR-T cells are enhanced [260].

In addition to cell surface modification nanotechnol-
ogy, the combination of engineered nanoparticles also 
enhanced CAR-T therapy. Li et  al. reported that using 
genetically programmable vesicles to improve the tumor 
microenvironment and enhance the killing function of 
CAR-T cells [261].

Moreover, the drawbacks and shortcomings of CAR-T 
therapy also need to be addressed. CAR-T therapy pos-
sesses serious side effects, which can produce serious 
CRS and neurotoxicity [262]. In addition, the excessive 
cost and high price of CAR-T products and the poor 
financial capacity of most patients can be another obsta-
cles in the clinic. The resistance to CAR-T therapy is also 
one of the issues that continues to be addressed [263–
265]. Regarding therapeutic targets, currently, CAR-T 
therapy only is effective in treating B cell-derived cancer, 
such as B-ALL, B cell lymphoma and myeloma. Due to 
lack of specific targets, CAR-T therapy against myeloid 
leukemia is still in preclinical studies [266]. In addition, 
the combination therapies with CAR-T therapy have 
shown great promise in preclinical study. For example, 
the combination of demethylating drugs can enhance the 
toxicity of CD123 CAR-T therapy on AML cells [267].

In addition to adoptive T cell-based therapy, other 
immune cells can also be used in immunotherapy. Engi-
neering NK cells into CAR-NK for cancer treatment 
also holds great promise [268, 269]. Macrophages play 

an important role in the pathogenesis of HMs [270]. 
Conversely, engineering macrophages into CAR-Mac-
rophage also showed good tumor killing ability [271]. 
In the future, nanotechnology-assisted ACT therapy 
holds promise in clinical application. In summary, utiliz-
ing nanotechnology to enhance CAR-T therapy still has 
enormous untapped potential for researchers.

Establishment of more effective and lasting immunological 
memory through nanotechnology
Relapse is the most serious problem affecting the progno-
sis and survival of HMs patients. Most patients will face 
recurrence after first remission. Studies on relapsed AML 
patients after allogeneic transplantation have shown that 
reducing MHC-II levels in cancer cells is an important 
cause leading to immune escape and relapse [272].

To achieve long-term tumor control, the immune sys-
tem must be trained to form lasting memories [273]. 
Therefore, developing a robust and effective vaccine has 
great prospects and commercial value. Traditional vac-
cines usually lack of sufficient antigenic activity, and 
thus, the body cannot produce lasting immune memory 
[165]. In future research, new leukemia antigens will be 
identified through more extensive and comprehensive 
bioinformatics analysis and the more efficient antigen 
presentation will be realized by the use of nanocarriers. 
We can design nanomedicine according to the new ther-
apeutic targets and antigens against HMs by enhancing 
the body’s immune response, ultimately achieving long-
term control of HMs.

Improving the effectiveness of HSCT 
through nanotechnology
Regarding HSCT, using nanomaterials to promote the 
expansion of HSCs is of great help to improve the effi-
ciency of HSCT. It is critical to understand and deter-
mine the key chemical and physical conditions that 
promote the expansion of HSCs [145] and most impor-
tantly prevent the malignant transformation of HSCs into 
cancerous cells during ex vivo culture [150]. Establishing 
a suitable in vitro expansion system is the key to achiev-
ing this goal [274, 275]. Encouragingly, a large number 
of studies focusing on the ex vivo expansion of HSCs are 
being reported, showing great prospects in this field.

Potential toxicity of nanomaterials to blood cells
Although nanomaterials show excellent properties and 
great prospects in drug delivery, the toxicity of various 
nanomaterials still need to be carefully studied [276, 
277]. The following summarizes the toxicity of the metal 
and carbon nanomaterials mentioned above.

In addition to being drug delivery carriers, metal nano-
particles themselves can also cause toxicity to cells. Tsai 
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et al. showed that after treatment with gold nanoparti-
cles (Au NPs), human chronic myeloid leukemia cells 
showed growth inhibition and apoptotic necrosis phe-
notype [278]. Mechanistically, the analysis of proteomic 
data reveals that the unfolded protein-related endoplas-
mic reticulum (ER) stress response is the main event and 
Au NPs are an effective endoplasmic reticulum stress 
inducer. The toxicity of other common metal nanoparti-
cles is shown in Table 6.

Carbon-based nanomaterials are also toxic to cells. 
Dinicola et  al. showed that multi-walled carbon nano-
tube buckypaper can induce cell cycle arrest by regulat-
ing AKT and MAPK signaling pathways and raised the 
issue of biocompatibility and potential toxicity [279]. 
Sato et  al. investigated the cytotoxicity of carbon nano-
tubes of different lengths to monocytes and found that 
longer nanotubes were more toxic because they were 
harder for macrophages to envelop [280]. Similarly, Yan 
and colleagues have continuously evaluated the effects 
of GONPs and rGONPs on THP-1 and THP-1a, prov-
ing that the surface oxidation state may lead to differ-
ent expressions of GFN and different immune toxicities 
[281].

Conclusions
In the end, nanomedicine is gradually moving out of the 
laboratory and entering clinical trials, and there are also 
many problems to be faced [286]. The biological safety of 
nanomedicine has gradually attracted people’s attention. 
The main problems of nanomedicine entering the clinic 
are: a. preparation problems. Most of the nanomedicines 
that have been reported are in the laboratory research 
stage, and the large-scale preparation of nanomedicine 
needs to be carried out in factories, and the current fac-
tories generally lack corresponding production lines. b. 
Biological safety issues. As a new type of medical materi-
als, nanomaterials still have other unknown side effects 
when taken as drugs. More laboratory and clinical trials 

are needed to ensure the safety of nanomedicine. c. Cost 
issues. As an emerging technology, nanotechnology gen-
erally has a relatively high production cost. If it becomes 
a clinical first-line drug, the production cost should be 
reduced so that the medical systems and patients of vari-
ous countries can afford it.
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